Skip to main content
Log in

Hybrid uncertainty analysis for a static response problem of structures with random and convex parameters

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, by using a combination of finite element analysis and a hybrid random convex model, a new numerical algorithm named hybrid perturbation Lagrange method (HPLM) is presented to address an uncertain static response problem of structures with a mixture of random and convex variables. The random variables are used to treat the uncertain parameters with sufficient statistical information, whereas the convex variables are used to describe the uncertain parameters with limited information. The expectation and variance of the random convex responses can be calculated effectively based on the matrix perturbation theory. Then, the interval bounds of these probabilistic characters of the structural responses can be obtained by means of the first-order Taylor series and the Lagrange multiplier method. Numerical results illustrate the feasibility and effectiveness of the proposed method to solve the static response problem of structures with hybrid or pure uncertain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moens, D., Vandepitte, D.: A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods Appl. Mech. Eng. 194, 1527–1555 (2005)

    Article  MATH  Google Scholar 

  2. Feng, Y.T., Li, C.F., Owen, D.R.J.: A direct Monte Carlo solution of linear stochastic algebraic system of equations. Finite Elem. Anal. Des. 46, 462–473 (2010)

    Article  MathSciNet  Google Scholar 

  3. Kamiński, M., Lauke, B.: Uncertainty in effective elastic properties of particle filled polymers by the Monte Carlo simulation. Compos. Struct. 123, 374–382 (2015)

    Article  Google Scholar 

  4. Kamiński, M.M.: A generalized stochastic perturbation technique for plasticity problems. Comput. Mech. 45, 349–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X.Y., Cen, S., Li, C.F., Owen, D.R.J.: A priori estimation for the stochastic perturbation method. Comput. Methods Appl. Mech. Eng. 286, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ngah, M.F., Young, A.: Application of the spectral stochastic finite element method for performance prediction of composite structures. Compos. Struct. 78, 447–456 (2007)

    Article  Google Scholar 

  7. Chen, N.Z., Soares, C.G.: Spectral stochastic finite element analysis for laminated composite plates. Comput. Methods Appl. Mech. Eng. 197, 4830–4839 (2008)

    Article  MATH  Google Scholar 

  8. Verhoosel, C.V., Gutierrez, M.A., Hulshoff, S.J.: Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems. Int. J. Numer. Methods Eng. 68, 401–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, W., Zhang, N., Ji, J.C.: A new method for random vibration analysis of stochastic truss structures. Finite Elem. Anal. Des. 45, 190–199 (2009)

    Article  MathSciNet  Google Scholar 

  10. Deng, Z.M., Guo, Z.P., Zhang, X.J.: Interval model updating using perturbation method and radial basis function neural networks. Mech. Syst. Signal Process. 84, 699–716 (2017)

    Article  Google Scholar 

  11. Sofi, A., Muscolino, G., Elishakoff, I.: Static response bounds of Timoshenko beams with spatially varying interval uncertainties. Acta Mech. 226, 3737–3748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben-Haim, Y., Elishakoff, I.: Convex Models of Uncertainties in Applied Mechanics. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  13. Ben-Haim, Y.: Convex models of uncertainty in radial pulse buckling of shells. J. Appl. Mech. 60, 683–688 (1993)

    Article  MATH  Google Scholar 

  14. Elishakoff, I., Elisseeff, P.: Non-probabilistic convex-theoretic modeling of scatter in material properties. AIAA J. 32, 843–849 (1994)

    Article  MATH  Google Scholar 

  15. Jiang, C., Han, X., Lu, G.Y., et al.: Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200, 2528–2546 (2011)

    Article  MATH  Google Scholar 

  16. Wang, X.J., Elishakoff, I.I., Qiu, Z.P.: Experimental data have to decide which of the non-probabilistic uncertainty description-convex modeling or interval analysis-to utilize. J. Appl. Mech. 75, 041018–041025 (2008)

    Article  Google Scholar 

  17. Xia, B., Dejie, Y.: Response analysis of acoustic field with convex parameters. J. Vib. Acoust. 136, 041017 (2014)

    Article  Google Scholar 

  18. Deng, Z.M., Guo, Z.P., Zhang, X.D.: Non-probabilistic set-theoretic models for transient heat conduction of thermal protection systems with uncertain parameters. Appl. Thermal Eng. 95, 10–17 (2016)

    Article  Google Scholar 

  19. Wang, L., Wang, X.J., Xia, Y.: Hybrid reliability analysis of structures with multi-source uncertainty. Acta Mech. 225, 413–430 (2014)

    Article  MATH  Google Scholar 

  20. Gao, W., Song, C.M., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32, 191–199 (2010)

    Article  Google Scholar 

  21. Gao, W., Wu, D., Song, C.M., Tin-Loi, F., Li, X.J.: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47, 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  22. Xia, B.Z., Yu, D.J., Liu, J.: Hybrid uncertain analysis for structural-acoustic problem with random and interval parameters. J. Sound Vib. 332, 2701–2720 (2013)

    Article  Google Scholar 

  23. Wang, C., Qiu, Z.P.: Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters. Int. J. Heat Mass Transf. 80, 319–328 (2015)

    Article  Google Scholar 

  24. Penmetsa, R.C., Grandhi, R.V.: Efficient estimation of structural reliability for problems with uncertain intervals. Comput. Struct. 80, 1103–1112 (2002)

    Article  Google Scholar 

  25. Adduri, P.R., Penmetsa, R.C.: Systems reliability analysis for mixed uncertain variables. Struct. Saf. 227, 1441–1453 (2009)

    Google Scholar 

  26. Karanki, D.R., Kushwaha, H.S., Verma, K.A., Ajit, S.: Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment. Risk Anal. 29, 662–675 (2009)

    Article  Google Scholar 

  27. Xiaoping, D., Sudjianto, A., Huang, B.: Reliability-based design with the mixture of random and interval variables. J. Mech. Des. 127, 1068–1076 (2005)

    Article  Google Scholar 

  28. Luo, Y., Kang, Z., Li, A.: Structural reliability assessment based on probability and convex set mixed model. Comput. Struct. 87, 1408–1415 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Deng, Z., Li, X. et al. Hybrid uncertainty analysis for a static response problem of structures with random and convex parameters. Acta Mech 228, 2987–3001 (2017). https://doi.org/10.1007/s00707-017-1869-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1869-5

Navigation