Skip to main content
Log in

A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Appropriate representation of the displacement field is important to establish proper stress distribution including shear-free condition at free surfaces for a laminated composite shell used in real engineering applications. The present study attempted to develop a more accurate higher-order displacement field for the analysis of a doubly curved laminated composite shell with \(\hbox {C}^{0 }\) finite element model based on higher-order shear deformation theory. A new displacement function is proposed for static and free vibration analysis of such a shell. The accurate strain displacement relationship is applied in the analysis of a shell structure with exactly zero shear-free condition at top and bottom surfaces. The proposed model is capable of determining the accurate shear stress distribution across the thickness of the laminate. Moderately deep and thick shells can be analyzed very accurately as the ratio of thickness coordinate to radius of curvature is incorporated in the formulation. An eight-noded isoparametric shell element with seven degrees of freedom at each node is used to formulate the finite element model. The numerical results in terms of deflection, stresses and natural frequencies obtained by the present formulations are compared with those available in the published literature to validate the accuracy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, A.H.E.: Small free vibration and deformation of thin elastic shells. Philos. Trans. R. Soc. 179, 491–549 (1888). doi:10.1098/rsta.1888.0016

    Article  MATH  Google Scholar 

  2. Carrera, E.: The effect of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite shells. J. Sound Vib. 150, 405–433 (1991). doi:10.1016/0022-460X(91)90895-Q

    Article  Google Scholar 

  3. Hildebrand, F.B., Reissner E, Thomas GB.: Note on the foundations of the theory of small displacement of orthotropic shells. NACA TN 1833 (1949)

  4. Nelson, R.B., Lorch, D.R.: A refined theory for laminated orthotropic plates. J. Appl. Mech. 41, 177–183 (1974). doi:10.1115/1.3423219

    Article  Google Scholar 

  5. Whitney, J.M., Sun, C.T.: A higher order theory for extensional motion of laminated composites. J. Sound Vib. 30, 85–97 (1973). doi:10.1016/S0022-460X(73)80052-5

    Article  MATH  Google Scholar 

  6. Levinson, M.: An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980). doi:10.1016/0093-6413(80)90049-x

    Article  MATH  Google Scholar 

  7. Bhimaraddi, A.: A higher order theory for free vibration analysis of circular cylindrical shells. Int. J. Solids Struct. 20, 623–630 (1984). doi:10.1016/0020-7683(84)90019-2

    Article  MATH  Google Scholar 

  8. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23, 319–330 (1985). doi:10.1016/0020-7225(85)90051-5

    Article  MATH  Google Scholar 

  9. Kant, T., Menon, M.P.: Higher-order theories for composite and sandwich cylindrical shells with \(\text{ C }^{0 }\)finite element. Comput. Struct. 33, 1191–1204 (1989). doi:10.1016/0045-7949(89)90458-6

    Article  MATH  Google Scholar 

  10. Ganapathi, M., Haboussi, M.: Free vibrations of thick laminated anisotropic non-circular cylindrical shells. Compos. Struct. 60, 125–133 (2003). doi:10.1016/s0263-8223(02)00339-2

    Article  Google Scholar 

  11. Bhimaraddi, A.: Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory. Int. J. Solids Struct. 27, 897–913 (1991). doi:10.1016/0020-7683(91)90023-9

    Article  MATH  Google Scholar 

  12. Pradyumna, S., Bandyopadhyay, J.N.: Static and free vibration analysis of laminated shells using a higher order theory. J. Reinf. Plast. Compos. 27, 167–168 (2008). doi:10.1177/0731684407081385

    Article  Google Scholar 

  13. Qatu, S.M., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93, 14–31 (2010). doi:10.1016/j.compstruct.2010.05.014

    Article  Google Scholar 

  14. Mantari, J.L., Oktem, A.S., Soares, C.G.: Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Compos. Struct. 94, 37–49 (2011). doi:10.1016/j.compstruct.2011.07.020

    Article  Google Scholar 

  15. Carrera, E.: A study of transverse normal stress effect on vibration of multilayered plates and shells. J. Sound Vib. 225, 803–829 (1999). doi:10.1006/jsvi.1999.2271

    Article  Google Scholar 

  16. Basar, Y., Omurtag, M.H.: Free vibration analysis of thin/thick laminated structures by layer-wise shell models. Comput. Struct. 74, 409–427 (2000). doi:10.1016/S0045-7949(99)00061-9

    Article  Google Scholar 

  17. Carrera, E.: Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Method Eng. 10, 215–296 (2003). doi:10.1007/BF02736224

    Article  MathSciNet  MATH  Google Scholar 

  18. Brage, A.M.B., Rivas, A.C.E.: High-frequency response of isotropic-laminated cylindrical shells modeled by a layerwise theory. Int. J. Solids Struct. 42, 4278–4294 (2005). doi:10.1016/j.ijsolstr.2004.06.062

    Article  Google Scholar 

  19. Cinefra, M., Carrera, E.: Shell finite elements with different through the thickness kinematics for the linear analysis of cylindrical multilayered structures. Int. J. Numer. Methods Eng. 93, 160–182 (2013). doi:10.1002/nme.4377

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, A., Chakrabarti, A., Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013). doi:10.1016/j.compstruct.2013.06.021

    Article  Google Scholar 

  21. Huang, M.N.: Influence on shear correction factors in the higher order shear deformation laminated shell theory. Int. J. Solids Struct. 31, 1263–1277 (1994). doi:10.1016/0020-7683(94)90120-1

    Article  MATH  Google Scholar 

  22. Qatu, M.S.: Accurate equations for laminated composite deep thick shells. Int. J. Solids Struct. 36, 2917–2941 (1999). doi:10.1016/S0020-7683(98)00134-6

    Article  MATH  Google Scholar 

  23. Thakur, S.N., Ray, C.: An accurate \(\text{ C }^{0}\) finite element model of moderately thick and deep laminated doubly curved shell considering cross sectional warping. Thin Wall Struct. 94, 384–393 (2015). doi:10.1016/j.tws.2015.04.027

    Article  Google Scholar 

  24. Thakur, S.N., Ray, C.: The effect of thickness coordinate to radius ratio on free vibration of moderately thick and deep doubly curved cross-ply laminated shell. Arch. Appl. Mech. 86, 1119–1132 (2015). doi:10.1007/s00419-015-1082-8

    Article  Google Scholar 

  25. Tornabene, F., Fantuzzi, N., Viola, E., Carrera, E.: Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Compos. Struct. (2014). doi:10.1016/j.compstruct.2013.08.038

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitali Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S.N., Ray, C. & Chakraborty, S. A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell. Acta Mech 228, 69–87 (2017). https://doi.org/10.1007/s00707-016-1693-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1693-3

Navigation