Skip to main content
Log in

Nanoscale anti-plane cracking of materials with consideration of bulk and surface piezoelectricity effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The influence of surface effect, including surface elasticity and surface piezoelectricity, on the fracture behavior of piezoelectricmaterials with an anti-plane crack is studied.Based on the coupled surface and interface elasticity model, the solutions to the problem are obtained by applying the singular integral method. By comparing the solutions influenced by the surface piezoelectricity with those affected by the surface elasticity, it is found that the influence of the surface piezoelectricity on the crack opening displacement, the crack electric potential jump across the crack center, the crack tip stress and electric displacement intensity factors cannot be ignored. Under various electrical boundary conditions, the influence of surface piezoelectricity on the sliding displacement, crack tip stress and electric displacement intensity factors exhibits the same tendency. Besides, the influence of surface piezoelectricity on the electric displacement intensity factor is independent of the electrical boundary conditions, which is different from the results where only the surface elasticity is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal R., Espinosa H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11, 786–790 (2011)

    Article  Google Scholar 

  2. Dai S., Park H.S.: Surface effects on the piezoelectricity of zno nanowires. J. Mech. Phys. Solids 61, 385–397 (2013)

    Article  Google Scholar 

  3. Wu H., Wu L., Li J., Chai G., Du S.: X-ray diffraction stress analysis of ferroelectric thin films with ideal (h k l) textures considering the piezoelectric coupling effect. Phys. B Condens. Matter 405, 1113–1118 (2010)

    Article  Google Scholar 

  4. Wu H.P., Xu B., Liu A., Chai G.: Strain-modulated magnetocapacitance of vertical ferroelectric–ferromagnetic nanocomposite heteroepitaxial films. J. Phys. D Appl. Phys. 45, 455306 (2012)

    Article  Google Scholar 

  5. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  6. Fang X.Q., Huang M.J., Zhu Z.T., Liu J.X.: Surface free energy effect on electro-mechanical behavior of piezoelectric thin film with square nanofibers under anti-plane shear. Acta Mech. 226, 149–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li X.F., Wang B.L.: Vibrational modes of timoshenko beams at small scales. Appl. Phys. Lett. 94, 101903 (2009)

    Article  Google Scholar 

  8. Li X.F., Wang B.L., Lee K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105, 074306 (2009)

    Article  Google Scholar 

  9. Wang G.F., Yang F.: Postbuckling analysis of nanowires with surface effects. J. Appl. Phys. 109, 063535 (2011)

    Article  Google Scholar 

  10. Tagantsev A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)

    Article  Google Scholar 

  11. Chen T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  MATH  Google Scholar 

  12. Fang X.-Q., Liu J.-X., Gupta V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)

    Article  Google Scholar 

  13. Pan X.H., Yu S.W., Feng X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astron. 54, 564–573 (2011)

    Article  Google Scholar 

  14. Huang G.Y., Yu S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B 243, R22–R24 (2006)

    Article  Google Scholar 

  15. Fang X.Q., Liu H.W., Feng W.J., Liu J.X.: Size-dependent effects on electromechanical response of multilayer piezoelectric nano-cylinder under electro-elastic waves. Compos. Struct. 125, 23–28 (2015)

    Article  Google Scholar 

  16. Kim C.I., Ru C., Schiavone P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kim C.I., Schiavone P., Ru C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77, 021011 (2010)

    Article  Google Scholar 

  18. Kim C.I., Schiavone P., Ru C.Q.: Analysis of plane-strain crack problems (mode-I & mode-II) in the presence of surface elasticity. J. Elast. 104, 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zemlyanova A.Y., Walton J.R.: Modeling of a curvilinear planar crack with a curvature-dependent surface tension. SIAM J. Appl. Math. 72, 1474–1492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang B., Han J., Du S.: Cracks problem for non-homogeneous composite material subjected to dynamic loading. Int. J. Solids Struct. 37, 1251–1274 (2000)

    Article  MATH  Google Scholar 

  21. Fang X.Q., Liu X.L., Liu J.X.: Anti-plane electro-mechanical behavior of piezoelectric composites with a nano-fiber considering couple stress at the interfaces. J. Appl. Phys. 114, 054310 (2013)

    Article  Google Scholar 

  22. Li S.P., Cao W.W., Cross L.E.: Stress and electric displacement distribution near griffith’s type iii crack tips in piezoceramics. Mater. Lett. 10, 219–222 (1990)

    Article  Google Scholar 

  23. Erdogan F., Gupta G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 29, 525-534 (1972)

    MathSciNet  MATH  Google Scholar 

  24. Muskhelishvili I.N.: Single integral equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  25. Andreussi F., Gurtin M.E.: On the wrinkling of a free surface. J. Appl. Phys. 48, 3798 (1977)

    Article  Google Scholar 

  26. Nan H.S., Wang B.L.: Effect of crack face residual surface stress on nanoscale fracture of piezoelectric materials. Eng. Fract. Mech. 110, 68–80 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Nan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, H.S., Wang, B.L. Nanoscale anti-plane cracking of materials with consideration of bulk and surface piezoelectricity effects. Acta Mech 227, 1445–1452 (2016). https://doi.org/10.1007/s00707-016-1563-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1563-z

Keywords

Navigation