Skip to main content
Log in

Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An interfacial imperfection coupling model is proposed to characterize the imperfect interface in a bi-layered multiferroic cylinder by extending the generalized linear spring model of the uncoupled imperfect interface. Based on the model, fracture analysis is performed on the multiferroic cylinder containing intra-layer cracks. Parametric studies on the stress intensity factor (SIF) yield three main conclusions: (a) the mechanical imperfection can enhance the SIF independently; (b) the magnetic or electric imperfection can reduce the SIF only through its coupling with the mechanical imperfection; and (c) the magneto-electric imperfection coupling does not affect the SIF in any case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benveniste Y.: The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 4, 197–208 (1985)

    Article  Google Scholar 

  2. Achenbach J.D., Zhu H.: Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. J. Mech. Phys. Solids 37, 381–393 (1989)

    Article  Google Scholar 

  3. Hashin Z.: Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 8, 333–348 (1990)

    Article  Google Scholar 

  4. Mahiou H., Beakou A.: Modelling of interfacial effects on the mechanical properties of fibre-reinforced composites. Compos. A Appl. Sci. Manuf. 29, 1035–1048 (1998)

    Article  Google Scholar 

  5. Fan H., Wang G.F.: Screw dislocation interacting with imperfect interface. Mech. Mater. 35, 943–953 (2003)

    Article  Google Scholar 

  6. Juan C.L.R., Reinaldo R.R., Raul G.D., Julian B.C., Federico J.S.: Transport properties in fibrous elastic rhombic composite with imperfect contact condition. Int. J. Mech. Sci. 53, 98–107 (2011)

    Article  Google Scholar 

  7. Sevostianov I., Rodriguez-Ramos R., Guinovart-Diaz R., Bravo-Castillero J., Sabina F.J.: Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites. Int. J. Solid. Struct. 49, 1518–1525 (2012)

    Article  Google Scholar 

  8. Quang H.L., Pham D.C., Bonnet G., He Q.C.: Estimations of the effective conductivity of anisotropic multiphase composites with imperfect interfaces. Int. J. Heat Mass Transf. 58, 175–187 (2013)

    Article  Google Scholar 

  9. Shodja H.M., Tabatabaei S.M, Kamali M.T.: A piezoelectric medium containing a cylindrical inhomogeneity: role of electric capacitors and mechanical imperfections. Int. J. Solids Struct. 44, 6361–6381 (2007)

    Article  MATH  Google Scholar 

  10. Wang X., Pan E.: Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Phys. Rev. B 76, 214107 (2007)

    Article  Google Scholar 

  11. Zhou Y.Y., Lü C.F., Chen W.Q.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94, 2736–2745 (2012)

    Article  Google Scholar 

  12. Nie G.Q., Liu J.X., Fang X.Q.: Shear horizontal (SH) waves propagating in piezoelectric–piezomagnetic bilayer system with an imperfect interface. Acta Mech. 223, 1999–2009 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang Z., Zhu J., Jin X.Y., Chen W.Q., Zhang C.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chen W.Q., Cai J.B., Ye G.R., Wang Y.F.: Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. Int. J. Solids Struct. 41, 5247–5263 (2004)

    Article  MATH  Google Scholar 

  15. Shodja H.M., Tabatabaei S.M., Kamali M.T.: A piezoelectric-inhomogeneity system with imperfect interface. Int. J. Eng. Sci. 44, 291–311 (2006)

    Article  Google Scholar 

  16. Wang X., Sudak L.J.: A piezoelectric screw dislocation interacting with an imperfect piezoelectric bimaterial interface. Int. J. Solids Struct. 44, 3344–3358 (2007)

    Article  MATH  Google Scholar 

  17. Fang Q.H., Liu Y.W., Jin B., Wen P.H.: A piezoelectric screw dislocation in a three-phase composite cylinder model with an imperfect interface. Int. J. Eng. Sci. 47, 39–49 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li Y.D., Lee K.Y.: Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor. Int. J. Solids Struct. 46, 1736–1742 (2009)

    Article  MATH  Google Scholar 

  19. Wang H.M., Pan E., Chen W.Q.: Large multiple resonance of magnetoelectric effect in a multiferroic composite cylinder with an imperfect interface. Phys. Status Solidi B Basic Solid State Phys. 248, 2180–2185 (2011)

    Google Scholar 

  20. Zheng H., Wang J., Lofland S.E. et al.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    Article  Google Scholar 

  21. Bichurin M.I., Viehland D., Srinivasan G.: Magnetoelectric interactions in ferromagnetic–piezoelectric layered structures: phenomena and devices. J. Electroceram. 19, 243–250 (2007)

    Article  Google Scholar 

  22. Liu J.X., Wei W.Y., Fang D.N.: Propagation behaviors of shear horizontal waves in piezoelectric–piezomagnetic periodically layered structures. Acta Mech. Sol. Sin. 23, 77–84 (2010)

    Article  Google Scholar 

  23. Wang H.M., Pan E., Chen W.Q.: Enhancing magnetoelectric effect via the curvature of composite cylinder. J. Appl. Phys. 107, 093514 (2010)

    Article  Google Scholar 

  24. Otero J.A., Rodríguez-Ramos R., Bravo-Castillero J., Monsivais G.: Interfacial waves between two piezoelectric half-spaces with electro-mechanical imperfect interface. Philos. Mag. Lett. 92, 534–540 (2012)

    Article  Google Scholar 

  25. Otero J.A., Rodríguez-Ramos R., Monsivais G., Stern C., Lebon F.: Interfacial waves between piezoelectric and piezomagnetic half-spaces with magneto-electro-mechanical imperfect interface. Philos. Mag. Lett. 93, 413–421 (2013)

    Article  Google Scholar 

  26. Shi Y., Wan Y., Zhong Z.: Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces. Mech. Mater. 72, 72–93 (2014)

    Article  Google Scholar 

  27. Li Y.D., Lee K.Y.: Magnetostrictive fracture of a cylindrical multiferroic composite. Int. J. Eng. Sci. 48, 199–208 (2010)

    Article  Google Scholar 

  28. Zhong X.C., Li X.F.: A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int. J. Eng. Sci. 44, 1394–1407 (2006)

    Article  Google Scholar 

  29. Li Y.D., Zhao H., Zhang N.: Mixed mode fracture of a piezoelectric–piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int. J. Solid. Struct. 50, 3610–3617 (2013)

    Article  Google Scholar 

  30. Xiong T., Li Y.D., Zhang H.C.: Interaction laws and mechanisms of the multiple unequal cracks on the two coaxial interfaces in a tri-layered multiferroic semi-cylinder. Eng. Fract. Mech. 116, 213–227 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YD., Xiong, T. & Cai, QG. Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder. Acta Mech 226, 1183–1199 (2015). https://doi.org/10.1007/s00707-014-1246-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1246-6

Keywords

Navigation