Skip to main content
Log in

Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The performance of shear horizontal waves excited by an external voltage imposed on the surface of a transversely isotropic piezoelectric sensitive layer imperfectly bonded to a metal or elastic substrate is investigated. The phase velocity, electromechanical coupling factor, temperature coefficient of delay, mass loading sensitivity, and displacement distribution along the thickness direction for the propagation of free waves, resonance frequency, and displacement signal and input admittance for the forced vibration are considered. Numerically, the SH wave speed smaller than Bleustein–Gulyaev wave velocity of a piezoelectric layer can be achieved for electrically open and shorted conditions when the interface is imperfect, which is totally different from the case of perfect interface. The imperfect interface evidently improves the energy transformation ratio, temperature stability, and mass sensitivity of the composite structure. The viscoelastic damping parameter has no relationship with resonance frequencies, and it only decreases the amplitudes of displacement signal and input admittance. The outcome is widely applicable and can be used to design high-performance surface acoustic wave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love A.E.H.: Some Problems of Geodynamics. Cambridge University Press, London (1911)

    MATH  Google Scholar 

  2. Bleustein J.L.: A new surface wave in piezoelectric material. Appl. Phys. Lett. 13, 412–413 (1968)

    Article  Google Scholar 

  3. Gulyaev Y.V.: Electroacoustic surface waves in solids. JETP Lett. 9, 37–38 (1969)

    Google Scholar 

  4. Gulyaev Y.V.: Review of shear surface acoustic waves in solids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 935–938 (1998)

    Article  Google Scholar 

  5. Nakamura K.: Shear-horizontal piezoelectric surface acoustic waves. Jpn. J. Appl. Phys. 46, 4421–4427 (2007)

    Article  Google Scholar 

  6. Collet B., Destrade M.: Explicit secular equations for piezoacoustic surface waves: Shear-horizontal modes. J. Acoust. Soc. Am. 116, 3432–3442 (2004)

    Article  Google Scholar 

  7. Wang Q., Varadan V.K.: Wave propagation in piezoelectric coupled plates by use of interdigital transducer: part 1. Dispersion characteristics. Int. J. Solids Struct. 39, 1119–1130 (2002)

    Article  MATH  Google Scholar 

  8. Melkumyan A.: Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. Int. J. Solids Struct. 44, 3594–3599 (2007)

    Article  MATH  Google Scholar 

  9. Yang J.S.: Love waves in piezoelectromagnetic materials. Acta Mech. 168, 111–117 (2004)

    Article  MATH  Google Scholar 

  10. Son M.S., Kang Y.J.: The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates. Ultrasonics 51, 489–495 (2011)

    Article  Google Scholar 

  11. Dutta S.: On the propagation of Love waves in a non-homogeneous internal stratum of finite depth lying between two semi-infinite isotropic media. Pure Appl. Geophys. 55, 31–36 (1963)

    Article  Google Scholar 

  12. Eskandari M., Shodja H.M.: Love waves propagation in functionally graded piezoelectric materials with quadratic variation. J. Sound Vib. 33, 195–204 (2008)

    Article  Google Scholar 

  13. Du J.K., Xian K., Wang J., Yong Y.K.: Love wave propagation in piezoelectric layered structure with dissipation. Ultrasonics 49, 281–286 (2009)

    Article  Google Scholar 

  14. Kielczynski P., Szalewski M., Balcerzak A.: Effect of a viscous liquid loading on Love wave propagation. Int. J. Solids Struct. 49, 2314–2319 (2012)

    Article  Google Scholar 

  15. Chattopadhyay A., De R.K.: Love type waves in a porous layer with irregular interface. Int. J. Eng. Sci. 21, 1295–1303 (1983)

    Article  MATH  Google Scholar 

  16. Termonia Y.: Fibre coating as a means to compensate for poor adhesion in fibre-reinforced materials. J. Mater. Sci. 25, 103–106 (1990)

    Article  Google Scholar 

  17. Schoenberg M.: Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 68, 1516–1521 (1980)

    Article  MATH  Google Scholar 

  18. Otero J.A., Rodriguez-Ramos R., Bravo-Castillero J., Monsivais G.: Interfacial waves between two piezoelectric half-spaces with electro-mechanical imperfect interface. Philos. Mag. Lett. 92, 534–540 (2012)

    Article  Google Scholar 

  19. Chen W.Q., Lee K.Y.: Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections. Compos. Struct. 65, 329–337 (2004)

    Article  Google Scholar 

  20. Jin F., Kishimoto K., Inoue H., Tateno T.: Experimental investigation on the interface properties evaluation in piezoelectric layered structures by Love waves propagation. Key Eng. Mater. 297–300, 807–812 (2005)

    Article  Google Scholar 

  21. Lavrentyev A.I., Rokhlin S.I.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103, 657–664 (1998)

    Article  Google Scholar 

  22. Nagy P.B.: Ultrasonic classification of imperfect interfaces. J. Nondestruct. Eval. 11, 127–139 (1992)

    Article  Google Scholar 

  23. Joshi S.P.: Non-linear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1, 80–83 (1992)

    Article  Google Scholar 

  24. Liu J.X., Wang Y.L., Wang B.L.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1875–1879 (2010)

    Article  Google Scholar 

  25. Qian Z.H., Jin F., Hirose S.: A novel type of transverse surface wave propagating in a layered structure consisting of a piezoelectric layer attached to an elastic half-space. Acta Mech. Sinica 26, 417–423 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou Y.Y., Lv C.F., Chen W.Q.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94, 2345–2736 (2012)

    Google Scholar 

  27. Curtis R.G., Redwood M.: Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J. Appl. Phys. 44, 2002–2007 (1973)

    Article  Google Scholar 

  28. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, New York (1973)

    MATH  Google Scholar 

  29. Abdalla A.N., Alsheikh F., AlHossain A.Y.: Effect of initial stresses on dispersion relation of transverse waves in a piezoelectric layered cylinder. Mater. Sci. Eng. B-Adv. 162, 147–154 (2009)

    Article  Google Scholar 

  30. Krishnamoorthya S., Iliadisa A.A.: Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices. Solid State Electron. 50, 1113–1118 (2006)

    Article  Google Scholar 

  31. Su J., Kuang Z.B., Liu H.: Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vib. 286, 981–999 (2005)

    Article  Google Scholar 

  32. Wang Q., Quek S.T., Varadan V.K.: Love waves in piezoelectric coupled solid media. Smart Mater. Struct. 10, 380–388 (2001)

    Article  Google Scholar 

  33. Dvoesherstov M.Y., Cherednik V.I., Chirimanov A.P.: Electroacoustic Lamb waves in piezoelectric crystal plates. Acoust. Phys. 50, 512–517 (2004)

    Article  Google Scholar 

  34. Jakoby B., Vellekoop M.J.: Properties of Love waves: applications in sensors. Smart Mater. Struct. 6, 668–679 (1997)

    Article  Google Scholar 

  35. Milsom R.F., Redwood M.: Piezoelectric coupling coefficient of Bleustein–Gulyaev waves. Electron. Lett. 6, 665–666 (1970)

    Article  Google Scholar 

  36. Tomar M., Gupta V., Mansingh A., Sreenivas K.: Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures. J. Phys. D-Appl. Phys. 34, 2267–2273 (2001)

    Article  Google Scholar 

  37. Chen X., Liu D.L.: Temperature stability of ZnO-based Love wave biosensor with SiO2 buffer layer. Sensor Actuat. A-Phys. 156, 317–322 (2009)

    Article  Google Scholar 

  38. Nishida T., Ibrahim R.C., Horiuchi T., Shioaski T., Matsushige K.: Theoretical study on surface acoustic wave characteristics of LiNbO3 films on sapphire substrates. Jpn. J. Appl. Phys. 36, 6077–6082 (1997)

    Article  Google Scholar 

  39. Tomar M., Gupta V., Sreenivas K., Mansingh A.: Temperature stability of ZnO thin film SAW device on fused quartz. IEEE Trans. Dev. Mater. Reliab. 5, 494–500 (2005)

    Article  Google Scholar 

  40. Chen X., Liu D.L., Chen J.S., Wang G.L.: The effect of a SiO2 layer on the performance of a ZnO-based SAW device for high sensitivity biosensor applications. Smart Mater. Struct. 18, 115021 (2009)

    Article  MathSciNet  Google Scholar 

  41. Bovik P.: A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. J. Appl. Mech. 63, 162–167 (1996)

    Article  Google Scholar 

  42. Xu L.M., Geng Y.L., Zhang Y., Fan H.: Power transmission through an unbounded elastic plate using a finite piezoelectric actuator and a finite piezoelectric power harvester. Int. J. Appl. Electromagn. 29, 145–156 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Jin, F. Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate. Acta Mech 226, 267–284 (2015). https://doi.org/10.1007/s00707-014-1181-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1181-6

Keywords

Navigation