Skip to main content
Log in

Nonlocal criterion of bridged cracks growth: analytical analysis

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A nonlocal fracture criterion with accounting of the work during bonds deformation at the fracture process zone has been implemented analytically for analysis of bridged cracks growth. This criterion consists of two conditions: (1) the necessary energy condition of the crack tip limit equilibrium, which takes into account the energy release rate to the crack tip and the rate of deformation energy consumed by bonds in the crack bridged zone; (2) the sufficient condition is the equality of the crack opening at the bridged zone trailing edge to the bond limit stretching. Subcritical and quasi-statical regimes of bridged cracks growth have been formulated on these fracture conditions. Regimes of bridged cracks growth are analyzed in detail for the case of an internal straight bridged crack in homogeneous material with bonds traction, which is constant and independent of the external loading. Analytical expressions are obtained for the deformation energy release rate and for the rate of deformation energy consumed by bonds. The main fracture parameters, the critical external load and the crack bridged zone size in the limit equilibrium state are determined and analyzed. The limit cases of a crack which is filled with bonds and a crack with a small-scale bridged zone are considered. A comparative study with the well-known force fracture criterion for bridged crack growth is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barenblatt G.I.: Concerning equilibrium cracks forming during brittle fracture. The stability of isolated cracks. Relationships with energetic theories. J. Appl. Math. Mech. (PMM) 23(5), 1273–1282 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 2, 55–129. Academic Press (1962)

  3. Cherepanov G.P.: Mechanics of Brittle Fracture. McGraw Hill, New York (1979)

    MATH  Google Scholar 

  4. Isupov L.P., Mikhailov S.E.: A comparative analysis of several nonlocal fracture criteria. Arch. Appl. Mech. 68(9), 597–612 (1998)

    Article  MATH  Google Scholar 

  5. Leguillon D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solids 21(1), 61–72 (2002)

    Article  MATH  Google Scholar 

  6. Martin E., Leguillon D., Carre N.: A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate. Int. J. Solids Struct. 49(26), 3915–3922 (2012)

    Article  Google Scholar 

  7. Meliani M.H., Matvienko Y.G., Pluvinage G.: Two-parameter fracture criterion (K ϱ,c T ef,c ) based on notch fracture mechanics. Int. J. Fract. 167(2), 173–182 (2011)

    Article  MATH  Google Scholar 

  8. Cornetti P., Pugno N., Carpinteri A., Taylor D.: Finite fracture mechanics: a coupled stress and energy failure criterion. Eng. Fract. Mech. 73(14), 2021–2033 (2006)

    Article  Google Scholar 

  9. Cornetti P., Mantic V., Carpinteri A.: Finite fracture mechanics at elastic interfaces. Int. J. Solids Struct. 49(7), 1022–1032 (2012)

    Article  Google Scholar 

  10. Weißgraeber P., Becker W.: Finite fracture mechanics model for mixed mode fracture in adhesive joints. Int. J. Solids Struct. 50(14–15), 2383–2394 (2013)

    Article  Google Scholar 

  11. Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  12. Panasyuk V.V.: Limiting Equilibrium of Brittle Solids with Fractures. Michigan Information Service, Detroit (1979)

    Google Scholar 

  13. Hillerborg A., Modeer M., Petersson P.-E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)

    Article  Google Scholar 

  14. Elices M., Guinea G.V., Gomez J., Planas J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)

    Article  Google Scholar 

  15. Bao G., Suo Z.: Remarks on crack-bridging concepts. Appl. Mech. Rev. 45(8), 355–366 (1992)

    Article  Google Scholar 

  16. Cox B.N., Marshall D.B.: Concepts for bridged cracks in fracture and fatigue. Acta Metall. et Mater. 42(2), 341–363 (1994)

    Article  Google Scholar 

  17. Carpinteri A., Massabo R.: Continuous vs discontinuous bridged-crack model for fiber-reinforced material in flexure. Int. J. Solids Struct. 34, 2321–2338 (1997)

    Article  MATH  Google Scholar 

  18. Li, S., Thouless, M.D., Waas, A.M., Schroeder, J.A., Zavattieri, P.D.: Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer matrix composite. Compos. Sci. Technol. 65(3-4), 537–549. JNC13-AMAC-Strasbourg (2005)

  19. Sun C.T., Jin Z.-H.: Modeling of composite fracture using cohesive zone and bridging models. Compos. Sci. Technol. 66(10), 1297–1302 (2006)

    Article  Google Scholar 

  20. Stang H., Olesen J.F., Poulsen P.N., Dick-Nielsen L.: On the application of cohesive crack modeling in cementitious materials. Mater. Struct. 40(4), 365–374 (2007)

    Article  Google Scholar 

  21. Novozhilov V.V.: On necessary and sufficient criterion for brittle strength. J. Appl. Math. Mech. (PMM) 33(2), 201–210 (1969)

    Article  Google Scholar 

  22. Grekov M.A., Morozov N.F.: Disc-shaped equilibrium cracks. J. Appl. Math. Mech. 64(1), 169–172 (2000)

    Article  Google Scholar 

  23. Nazarov S.A.: Three-dimensional formulation of the Novozhilov criterion for mode i cracks. Dokl. Phys. 50(6), 328–332 (2005)

    Article  MathSciNet  Google Scholar 

  24. Nairn J.A.: Analytical and numerical modeling of R-curves for cracks with bridging zones. Int. J. Fract. 155, 167–181 (2009)

    Article  MATH  Google Scholar 

  25. Matsumoto N., Nairn J.A.: The fracture toughness of medium density fiberboard (mdf) including the effects of fiber bridging and crack-plane interference. Eng. Fract. Mech. 76(18), 2748–2757 (2009)

    Article  Google Scholar 

  26. Goldstein R., Perelmuter M.: Modeling of bonding at an interface crack. Int. J. Fract. 99, 53–79 (1999)

    Article  Google Scholar 

  27. Perelmuter M.N.: A criterion for the growth of cracks with bonds in the end zone. J. Appl. Math. Mech. 71(1), 137–153 (2007)

    Article  MathSciNet  Google Scholar 

  28. Budiansky B., Amazigo J.C., Evans A.G.: Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36(2), 167–187 (1988)

    Article  Google Scholar 

  29. Salganik R.L.: The brittle fracture of cemented bodies. J. Appl. Math. Mech. (PMM) 27(5), 1468–1478 (1963)

    Article  Google Scholar 

  30. Weitsman Y.: Nonlinear analysis of crazes. Trans. ASME J. Appl. Mech. 53, 97–103 (1986)

    Article  MATH  Google Scholar 

  31. Rose L.R.F.: Crack reinforcement by distributed springs. J. Mech. Phys. Solids 35(4), 383–405 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Budiansky B., Cui Y.L.: On the tensile strength of a fiber-reinforced ceramic composite containing a crack-like flaw. J. Mech. Phys. Solids 42(1), 1–19 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Perelmuter M.: Boundary element analysis of structures with bridged interfacial cracks. Comput. Mech. 51, 523–534 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ungsuwarungsri T., Knauss W.G.: A nonlinear analysis of an equilibrium craze: part II—simulations of craze and crack growth. J. Appl. Mech. 55(1), 52–58 (1988)

    Article  Google Scholar 

  35. Zhu Y., Liechti K.M., Ravi-Chandar K.: Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int. J. Solids Struct. 46(1), 31–51 (2009)

    Article  Google Scholar 

  36. Budiansky B., Evans A.G., Hutchinson J.W.: Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites. Int. J. Solids Struct. 32(3-4), 315–328 (1995)

    Article  MATH  Google Scholar 

  37. Goldstein R.V., Bakirov V.F., Perelmuter M.N.: Modeling of the adhesion strength and fracture kinetics of the microelectronic package polymer-polymer joints. Proc. Inst. Phys. Technol. Russ. Acad. Sci. 13, 115–125 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Perelmuter.

Additional information

This research was partly supported by Russian Foundation for Basic Research; the research project numbers are 14-01-00869 and 14-08-01163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelmuter, M. Nonlocal criterion of bridged cracks growth: analytical analysis. Acta Mech 226, 397–418 (2015). https://doi.org/10.1007/s00707-014-1170-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1170-9

Keywords

Navigation