Skip to main content
Log in

Application of fractional continuum mechanics to rate independent plasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the application of fractional continuum mechanics to rate independent plasticity is presented. This new formulation is non-local due to the properties of the applied fractional differential operator during the definition of kinematics. In the description, a small fractional strains assumption is used together with additive decomposition of total fractional strains into elastic and plastic parts. Classical local rate independent plasticity is recovered as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40(24), 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aifantis E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  3. Atanackovic T.M., Stankovic B.: Generalized wave equation in nonlocal elasticity. Acta Mech. 208(1–2), 1–10 (2009)

    Article  MATH  Google Scholar 

  4. Borst R., Pamin J.: Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)

    Article  MATH  Google Scholar 

  5. Carpinteri A., Cornetti P., Sapora A.: A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Special Top 193, 193–204 (2011)

    Article  Google Scholar 

  6. Ciesielski M., Leszczynski J.: Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional derivative. J. Theor. Appl. Mech. 44(2), 393–403 (2006)

    Google Scholar 

  7. Di Paola M., Failla G., Zingales M.: Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dornowski W., Perzyna P.: Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes. Int. J. Solids Struct. 39, 4949–4977 (2002)

    Article  MATH  Google Scholar 

  9. Drapaca C.S., Sivaloganathan S.: A fractional model of continuum mechanics. J. Elast. 107, 107–123 (2012)

    Article  MathSciNet  Google Scholar 

  10. Eftis J., Carrasco C., Osegueda R.A.: A constitutive-microdamage model to simulate hypervelocity projectile-target impact, material damage and fracture. Int. J. Plast. 19, 1321–1354 (2003)

    Article  MATH  Google Scholar 

  11. Feller, W.: On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. The Marcel Riesz Memorial volume, pp. 73–81, Lund (1952)

  12. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  13. Frederico G.S.F., Torres D.F.M.: Fractional Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 217, 1023–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia D., Wang Y.M., Ramesh K.T., Ma E., Zhu Y.T., Valiev R.Z.: Deformation behavior and plastic instabilities of ultrafine-grain titanium. Appl. Phys. Lett. 79, 611–613 (2001)

    Article  Google Scholar 

  15. Jia S.P., Ramesh K.T., Ma E.: Effects of nanocrystalline and ultrafne grain sizes on constitutive behaviour and shear bands in iron. Acta Mater. 51, 3495–3509 (2003)

    Article  Google Scholar 

  16. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Lazopoulos K.A.: Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leibniz G.W.: Mathematische Schriften. Georg Olms Verlagsbuchhandlung, Hildesheim (1962)

    Google Scholar 

  19. Leszczyński, J.S.: A discrete model of the dynamics of particle collision in granular flows. Monographs No 106. The Publishing Office of Czestochowa University of Technology (2005) (in Polish)

  20. Leszczyński, J.S.: An introduction to fractional mechanics. Monographs No 198. The Publishing Office of Czestochowa University of Technology (2011)

  21. Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  22. Marsden J.E., Hughes T.J.H: Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey (1983)

    MATH  Google Scholar 

  23. Narayanasamy R., Parthasarathi N.L., Narayanan C.S.: Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions. Mater. Des. 30, 1310–1324 (2009)

    Article  Google Scholar 

  24. Nowacki W.K., Nowak Z., Perzyna P., Pêcherski R.: Effect of strain rate on ductile fracture. J. Theor. Appl. Mech. 48(4), 1003–1026 (2010)

    Google Scholar 

  25. Odibat Z.: Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178, 527–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Łodygowski T., Perzyna P.: Localized fracture of inelastic polycrystalline solids under dynamic loading process. Int. J. Damage Mech. 6, 364–407 (1997)

    Article  Google Scholar 

  27. Pêcherski R.B.: Relation of microscopic observations to constitutive modelling for advanced deformations and fracture initiation of viscoplastic materials. Arch. Mech. 35(2), 257–277 (1983)

    MATH  Google Scholar 

  28. Perzyna, P.: Constitutive modelling of dissipative solids for localization and fracture. In: Perzyna, P. (ed.), Localization and Fracture Phenomena in Inelastic Solids, chapter 3, pp. 99–241. Springer. (CISM course and lectures—No.386) (1998)

  29. Perzyna P.: The thermodynamical theory of elasto-viscoplasticity. Eng. Trans. 53, 235–316 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Podlubny I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering. Academin Press, London (1999)

    Google Scholar 

  31. Podlubny I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Polizzotto C.: A unified residual-based thermodynamic framework for strain gradient theories of plasticity. Int. J. Plast. 27(3), 388–413 (2011)

    Article  MATH  Google Scholar 

  33. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  34. Shojaei A., Voyiadjis G.Z., Tan P.J.: Viscoplastic constitutive theory for brittle to ductile damage in polycrystalline materials under dynamic loading. Int. J. Plast. 48, 125–151 (2013)

    Article  Google Scholar 

  35. Simo J.C., Hughes T.J.R.: Computational Inelasticity, Volume 7 of Interdisciplinary Applied Mathematics. Springer, Berlin (1997)

    Google Scholar 

  36. Sumelka, W.: Fractional deformation gradients. In: 7th International Workshop on Dynamic Behaviour of Materials and its Applications in Industrial Processes, Madrid, Spain, pp. 54–55 (2013)

  37. Sumelka, W.: Non-local continuum mechanics based on fractional calculus. In: 20th International Conference on Computer Methods in Mechanics, Poznań, Poland, pp. MS02–05–06 (2013)

  38. Sumelka W.: Role of covariance in continuum damage mechanics. ASCE J. Eng. Mech. 139(11), 1610–1620 (2013)

    Article  Google Scholar 

  39. Sumelka W.: Fractional viscoplasticity. Mech. Res. Commun. 56, 31–36 (2014)

    Article  Google Scholar 

  40. Sumelka W., Łodygowski T.: The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes. Arch. Appl. Mech. 81(12), 1973–1992 (2011)

    Article  MATH  Google Scholar 

  41. Sumelka W., Łodygowski T.: Reduction of the number of material parameters by ann approximation. Comput. Mech. 52, 287–300 (2013)

    Article  MATH  Google Scholar 

  42. Tarasov V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vazquez, L.: A fruitful interplay: from nonlocality to fractional calculus. In: F. Kh. Abdullaev, V.V. Konotop (eds.) Nonlinear Waves: Classical and Quantum Aspects, Kluwer, pp. 129–133 (2004)

  44. Voyiadjis G.Z., Abu Al-Rub R.K.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)

    Article  MATH  Google Scholar 

  45. Voyiadjis G.Z., Faghihi D.: Localization in stainless steel using microstructural based viscoplastic model. Int. J. Impact Eng. 54, 114–129 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Sumelka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumelka, W. Application of fractional continuum mechanics to rate independent plasticity. Acta Mech 225, 3247–3264 (2014). https://doi.org/10.1007/s00707-014-1106-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1106-4

Keywords

Navigation