Skip to main content
Log in

Lateral buckling analysis of nanotubes and nanorings under uniform external pressure: a closed-form nonlocal solution

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study presents a modified cylindrical shell theory to predict the critical lateral buckling of both nanotubes and nanorings under uniform external pressure. To this end, nonlocal elasticity theory is incorporated into Donnell’s cylindrical shell model and closed-form critical lateral buckling solutions for different nanotubes and nanorings are derived from the coupled displacement equations. In this regard, a novel method is presented for decoupling the displacement equations to facilitate the derivation of the equations and results. Also, the effects of nonlocal parameter, aspect ratio, and mode numbers are investigated for lateral buckling of short and long nanotubes as well as nanorings. Results show that increasing the nonlocal effects, aspect ratio, and mode numbers of the nanotubes can reduce the value of the critical lateral pressure. Finally, the numerical results are compared with existing literature and show good agreement. The results of the new model are more accurate to capture the size effects for nanotubes and nanorings. These findings are useful for designing nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oveissi S, Toghraie D, Eftekhari SA (2016) Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure. Phys E Low Dimens Syst Nanostruct 83:164-173

    Article  Google Scholar 

  2. Oveissi S, Toghraie D, Eftekhari SA (2016) Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid. Phys E Low Dimens Syst Nanostruct 83:275–283

    Article  Google Scholar 

  3. Hosseini-Ara R, Mirdamadi HR, Khademyzadeh H, Mostolizadeh R (2012) Stability analysis of carbon nanotubes based on a novel beam model and its comparison with sanders shell model and molecular dynamics simulations. J Braz Soc Mech Sci Eng 34(2):126–134

    Article  Google Scholar 

  4. Karimi-Maleh H, Kumar BG, Rajendran S, Qin JQ, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F (2020) Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq 314:113588

    Article  Google Scholar 

  5. Pavlović IR, Pavlović R, Janevski G, Despenić N, Pajković V (2020) Dynamic behavior of two elastically connected nanobeams under a white noise process. FU Mech Eng 18(2):219–227

    Article  Google Scholar 

  6. Sofiyev AH, Mammadov Z, Dimitri R, Tornabene F (2020) Vibration analysis of shear deformable carbon nanotubes-based functionally graded conical shells resting on elastic foundations. Math Meth Appl Sci. https://doi.org/10.1002/mma.6674

    Article  Google Scholar 

  7. Karimi-Maleh H, Karimi F, Orooji Y, Mansouri G, Razmjou A, Aygun A, Sen F (2020) A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep 10(1):11699

    Article  Google Scholar 

  8. Karami B, Janghorban M, Shahsavari D, Dimitri R, Tornabene F (2019) Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules 24(15):2750

    Article  Google Scholar 

  9. Rajendran Selvamani R, Sree Jayan MM, Dimitri R, Tornabene F, Ebrahim F (2020) Nonlinear magneto-thermo-elastic vibration of mass sensor armchair carbon nanotube resting on an elastic substrate. Curved Layaer Struct 7:153–165

    Article  Google Scholar 

  10. Orooji Y, Derakhshandeh MR, Ghasali E, Alizadeh M, Shahedi Asl M, Ebadzadeh T (2019) Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram Int 45:16015–16021

    Article  Google Scholar 

  11. Rysaeva LK, Korznikova EA, Murzaev RT, Abdullina DU, Kudreyko AA, Baimova JA, Lisovenko DS, Dmitriev SV (2020) Elastic damper based on the carbon nanotubes bundle. FU Mech Eng 18(1):1–12

    Article  Google Scholar 

  12. Orooji Y, Alizadeh A, Ghasali E, Derakhshandeh MR, Shahedi Asl M, Ebadzadeh T (2019) Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram Int 45:20844–20854

    Article  Google Scholar 

  13. Karimi-Maleh H, Cellat K, Arıkan K, Savk A, Karimi F, Şen F (2020) Palladium-Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater Chem Phys 250:123042

    Article  Google Scholar 

  14. Orooji Y, Ghasali E, Moradi M, Derakhshandeh MR, Alizadeh M, Shahedi Asl M, Ebadzadeh T (2019) Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram Int 45:16288–16296

    Article  Google Scholar 

  15. Li B, Lee C (2011) NEMS diaphragm sensors integrated with triple-nano-ring resonator. Sens Actuat A Phys 172(1):61–68

    Article  Google Scholar 

  16. Rajasekar R, Robinson S (2019) Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14:3–15

    Article  Google Scholar 

  17. Ramos D, Tamayo J, Mertens J, Calleja M, Zaballos A (2006) Origin of the response of nanomechanical resonators to bacteria adsorption. Appl Phys Lett 100:105–106

    Google Scholar 

  18. Hosseini-Ara R, Karamrezaei AH, Mokhtarian A (2020) Exact analysis of antibody-coated silicon biological nano-sensors (SBNSs) to identify viruses and bacteria. Microsyst Technol 26:509–516

    Article  Google Scholar 

  19. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MathSciNet  Google Scholar 

  20. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  21. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  22. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  23. Sudak LJ (2003) Column buckling of multi-walled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94:7281–7287

    Article  Google Scholar 

  24. Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70:205430

    Article  Google Scholar 

  25. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  Google Scholar 

  26. Hosseini-Ara R (2018) Nano-scale effects on nonlocal boundary conditions for exact buckling analysis of nano-beams with different end conditions. J Braz Soc Mech Sci Eng 40:144. https://doi.org/10.1007/s40430-018-1076-x

    Article  Google Scholar 

  27. Ru CQ (2000) Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys Rev B 62:10405

    Article  Google Scholar 

  28. Wang CY, Ru CQ, Mioduchowski A (2003) Elastic buckling of multiwall carbon nanotubes under high pressure. J Nanosci Nanotech 3:199–208

    Article  Google Scholar 

  29. Wang Q, Hu T, Chen G, Jiang Q (2005) Bending instability characteristics of double-walled carbon nanotubes. Phys Rev B 71:045403

    Article  Google Scholar 

  30. Zhang YQ, Liu GR, Han X (2006) Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys Lett A 349:370–376

    Article  Google Scholar 

  31. Wang CM, Xiang Y, Yang J, Kitipornchai S (2012) Buckling of nano-rings/Arches based on nonlocal elasticity. Int J Appl Mech 4(3):1250025

    Article  Google Scholar 

  32. Wang CM, Duan WH (2008) Vibration of nanorings/arches based on nonlocal elasticity. J Appl Phys 104:014303

    Article  Google Scholar 

  33. Moosavi H, Mohammadi M, Farajpour A, Shahidi SH (2011) Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory. Phys E 44:135–140

    Article  Google Scholar 

  34. Chajes A (1974) Principles of structural stability theory. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  35. Donnell LH (1976) Beams, plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  36. Brush DO, Almroth BO (1975) Buckling of bars, plates, and shells. McGraw-Hill, New York

    Book  Google Scholar 

  37. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  Google Scholar 

  38. Nguyen HLT, Elishakoff I, Nguyen VT (2009) Buckling under the external pressure of cylindrical shells with variable thickness. Int J Solids Struct 46:4163–4168

    Article  Google Scholar 

  39. Vodenitcharova T, Ansourian P (1996) Buckling of circular cylindrical shells subject to uniform lateral pressure. Eng Struct 18(8):604–614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Hosseini-Ara or Davood Toghraie.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Ara, R., Kashi, M. & Toghraie, D. Lateral buckling analysis of nanotubes and nanorings under uniform external pressure: a closed-form nonlocal solution. J Braz. Soc. Mech. Sci. Eng. 43, 128 (2021). https://doi.org/10.1007/s40430-021-02859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02859-z

Keywords

Navigation