Skip to main content
Log in

Effect of temperature-dependent viscosity on the onset of Bénard–Marangoni ferroconvection in a ferrofluid saturated porous layer

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The criterion for the onset of Bénard–Marangoni ferroconvection in an initially quiescent magnetized ferrofluid saturated horizontal Brinkman porous layer is investigated in the presence of a uniform vertical magnetic field. The viscosity is considered to be varying exponentially with temperature. The lower rigid boundary and the upper free boundary at which the surface tension effects are accounted for are assumed to be perfectly insulated to temperature perturbations. The eigenvalue problem is solved numerically using the Galerkin technique and analytically by regular perturbation technique with wave number a as a perturbation parameter. It is observed that the analytical and numerical results are very well comparable. The characteristics of stability of the system are strongly dependent on the viscosity parameter B. The effect of B on the onset of Bénard–Marangoni ferroconvection in a porous layer is dual in nature depending on the choices of the physical parameters, and a sublayer starts to form at higher values of B. The nonlinearity of fluid magnetization M 3 is found to have no influence on the onset of ferroconvection, whereas an increase in the value of the magnetic number M 1 and the Darcy number Da is to advance the onset of Bénard–Marangoni ferroconvection in a porous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosensweig R.E.: Ferrohydrodynamics. Cambridge University Press, London (1985)

    Google Scholar 

  2. Finlayson B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753 767 (1970)

    Article  Google Scholar 

  3. Ganguly R., Sen S., Puri I.K.: Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 271, 63–73 (2004)

    Article  Google Scholar 

  4. Odenbach S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter. 16, R1135–50 (2004)

    Article  Google Scholar 

  5. Zahn M., Rosensweig R.E.: Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans. Magn. 16, 275–282 (1980)

    Article  Google Scholar 

  6. Vaidyanathan G., Sekar R., Balasubramanian R.: Ferroconvective instability of fluids saturating a porous medium. Int. J. Eng. Sci. 29, 1259–1267 (1991)

    Article  MATH  Google Scholar 

  7. Borglin S.E., Mordis J., Oldenburg C.M.: Experimental studies of the flow of ferrofluid in porous media. Transp. Porous Media 41, 61–80 (2000)

    Article  Google Scholar 

  8. Shivakumara I.S., Nanjundappa C.E., Ravisha M.: Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. ASME J. Heat Transf. 131, 101003-1–101003-9 (2009)

    Google Scholar 

  9. Nanjundappa C.E., Shivakumara I.S., Ravisha M.: The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45, 213–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nanjundappa C.E., Shivakumara I.S., Lee J., Ravisha M.: Effect of internal heat generation on the onset of Brinkman–Bénard convection in a ferrofluid saturated porous layer. Int. J. Therm. Sci. 50, 160–168 (2011)

    Article  Google Scholar 

  11. Nanjundappa C.E., Shivakumara I.S, Prakash H.N.: Penetrative ferroconvection via internal heating in a saturated porous layer with constant heat flux at the lower boundary. J. Magn. Magn. Mater. 324, 1670–1678 (2012)

    Article  Google Scholar 

  12. Qin Y., Kaloni P.N.: Nonlinear stability problem of a ferromagnetic fluid with surface tension effect. Eur. J. Mech B Fluids 13, 305–321 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Odenbach S.: Microgravity experiments on thermomagnetic convection in magnetic fluids. J. Magn. Magn. Mater. 149, 155–157 (1995)

    Article  Google Scholar 

  14. Weilepp J., Brand H.R.: Competition between the Bénard–Marangoni and Rosensweig instability in magnetic fluids. J. Phys. II France 6, 419–441 (1996)

    Article  Google Scholar 

  15. Odenbach S.: Microgravity research as a tool for the investigation of effects in magnetic fluids. J. Magn. Magn. Mater. 201, 149–154 (1999)

    Article  Google Scholar 

  16. Weilepp J., Brand H.R.: Coupling between Marangoni and Rosensweig instabilities. Part I: the transfer wave. Eur. J. Appl. Phys. 16, 217–229 (2001)

    Article  Google Scholar 

  17. Shivakumara I.S., Rudraiah N., Nanjundappa C.E.: Effect of non-uniform basic temperature gradient on Rayleigh–Bénard–Marangoni convection in ferrofluids. J. Magn. Magn. Mater. 248, 379–395 (2002)

    Article  Google Scholar 

  18. Hennenberg M., Weyssow B., Slavtchev S., Alexandrov V., Desaive T.: Rayleigh–Marangoni–Bénard instability of a ferrofluid layer in a vertical magnetic field. J. Magn. Magn. Mater. 289, 268–271 (2005)

    Article  Google Scholar 

  19. Shivakumara I.S., Nanjundappa C.E.: Marangoni ferroconvection with different initial temperature gradients. J. Energy Heat Mass Transf. 28, 45–61 (2006)

    Google Scholar 

  20. Nanjundappa C.E., Shivakumara I.S., Arunkumar R.: Bénard–Marangoni ferroconvection with magnetic field dependent viscosity. J. Magn. Magn. Mater. 322, 2256–2263 (2010)

    Article  Google Scholar 

  21. Nanjundappa C.E., Shivakumara I.S., Arunkumar R.: Onset of Bénard–Marangoni ferroconvection with internal heat generation. Microgravity Sci. Technol. 23, 29–39 (2011)

    Article  Google Scholar 

  22. Nanjundappa C.E., Shivakumara I.S., Srikumar K.: On the penetrative Benard–Marangoni convection in a ferromagnetic fluid layer. Aerosp. Sci. Technol. 27, 57–66 (2013)

    Article  Google Scholar 

  23. Patberg B., Kores A., Steenge W.D.E., Drinkenburg A.A.H.: Effectiveness of mass transfer in a packed distillation column in relation to surface tension gradients. Chem. Eng. Sci. 38, 917–923 (1983)

    Article  Google Scholar 

  24. White I., Perroux K.M.: Marangoni instabilities in porous media. In: Wooding, R.A., White, I. (eds) Proceedings of the CSIRO/DSIR Seminar on Convective Flows in Porous Media., pp. 99–111. DSIR, Wellington (1985)

    Google Scholar 

  25. Hennenberg M., Saghir M.Z., Rednikov A., Legros J.C.: Porous media and the Bénard–Marangoni problem. Transp. Porous Media 27, 327–355 (1997)

    Article  Google Scholar 

  26. Shivakumara I.S., Nanjundappa C.E., Chavaraddi K.B.: Darcy–Bénard–Marangoni convection in porous media. Int. J. Heat Mass Transf. 52, 2815–2823 (2009)

    Article  MATH  Google Scholar 

  27. Stengel K.C., Oliver D.S., Booker J.R.: Onset of convection in a variable-viscosity fluid. J. Fluid Mech. 120, 411–431 (1982)

    Article  MATH  Google Scholar 

  28. Capone F., Gentile M.: Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity. Acta Mech. 107, 53–64 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hashim I., Kechil S.A.: Active control of Marangoni instability in a fluid layer with temperature-dependent viscosity in a microgravity environment. Fluid Dyn. Res. 41, 045504–045512 (2009)

    Article  MathSciNet  Google Scholar 

  30. Kassoy D.R., Zebib A.: Variable viscosity effects on the onset of convection in porous media. Phys. Fluids 18, 1649–1651 (1975)

    Article  Google Scholar 

  31. Blythe P.A., Simpkins P.G.: Convection in a porous layer for a temperature dependent viscosity. Int. J. Heat Mass Transf. 24, 497–506 (1981)

    Article  MATH  Google Scholar 

  32. Hooman K., Gurgenci H.: Effects of temperature-dependent viscosity on Bénard convection in a porous medium using a non-Darcy model. Int. J. Heat Mass Transf. 51, 1139–1149 (2008)

    Article  MATH  Google Scholar 

  33. Stiles P.J., Kagan M.J.: Thermoconvective instability of a ferrofluid in a strong magnetic field. J. Colloid Interface Sci. 134, 435–449 (1900)

    Article  Google Scholar 

  34. Shivakumara I.S., Lee J., Nanjundappa C.E.: Onset of thermogravitational convection in a ferrofluid layer with temperature dependent viscosity. ASME J. Heat Transf. 134, 0125011–0125017 (2012)

    Google Scholar 

  35. Nanjundappa C.E., Shivakumara I.S., Arunkumar R.: Onset of Marangoni–Bénard ferroconvection with temperature dependent viscosity. Microgravity Sci. Technol. 25, 103–112 (2013)

    Article  Google Scholar 

  36. Vidal A., Acrivos A.: Nature of the neutral state in surface tension driven convection. Phys. Fluids. 9, 615–616 (1966)

    Article  Google Scholar 

  37. Char M.I., Chen C.C.: Influence of viscosity variation on the stationary Bénard–Marangoni instability with a boundary slab of finite conductivity. Acta Mech. 135, 181–198 (1999)

    Article  MATH  Google Scholar 

  38. Garcia-Ybarra P.L., Gastillo J.L., Valerde M.G.: Bénard–Marangoni convection with deformable interface and poorly conducting boundaries. Phys. Fluids 30, 2655–2661 (1987)

    Article  MATH  Google Scholar 

  39. Yang H.Q., Yang K.T.: Bénard–Marangoni instability in a two layer system with uniform heat flux. J. Thermophys. 4, 73–78 (1990)

    Article  Google Scholar 

  40. Nanjundappa C.E., Shivakumara I.S.: Effect of velocity and temperature boundary conditions on convective instability in a ferrofluid layer. ASME J. Heat Transf. 130, 1045021–1045025 (2008)

    Google Scholar 

  41. Auernhammera H.R., Brand G.K.: Thermal convection in a rotating layer of a magnetic fluid. Eur. Phys. J. B. 16, 157–168 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Nanjundappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanjundappa, C.E., Savitha, B., Arpitha Raju, B. et al. Effect of temperature-dependent viscosity on the onset of Bénard–Marangoni ferroconvection in a ferrofluid saturated porous layer. Acta Mech 225, 835–850 (2014). https://doi.org/10.1007/s00707-013-0999-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0999-7

Keywords

Navigation