Skip to main content
Log in

Effect of Coriolis Force on Bénard–Marangoni Convection in a Rotating Ferrofluid Layer with MFD Viscosity

  • Original article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The simultaneous effect of Coriolis force due to rotation and magnetic field dependent (MFD) viscosity on the onset of Bénard-Marangoni convection in a horizontal ferrofluid layer in the presence of a uniform vertical magnetic field is studied. The lower boundary is rigid while the upper free boundary is open to the atmosphere and at which the temperature-dependent surface tension effect is allowed for. The Galerkin technique is employed to extract the critical stability parameters numerically. The results show that the onset of Bénard-Marangoni ferroconvection is delayed with an increase in the MFD viscosity parameter Λ, Taylor number T a, magnetic susceptibility χ and Biot number B i but opposite is the case with an increase in the value of magnetic number M 1 and nonlinearity of fluid magnetization M 3. Further, increase in M 1,M 3 and decrease in Λ,T a, χ and B i is to decrease the size of the convection cells. Comparisons of results between the present and the existing ones are made under the limiting conditions and good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Auernhammer, G.K., Brand, H.R.: Thermal convection in a rotating layer of a magnetic fluid. The European Phys. J. B 16, 157–168 (2000)

    Article  Google Scholar 

  • Blums, E.: Heat and mass transfer phenomena. In: Odenbach, S (ed.) Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer-Verlag, Berlin, Heidelberg, New York (2002)

    Google Scholar 

  • Chandrasekhar, S.: Hydrodynamics and Hydromagnetic Stability. Oxford University, Claredon Press, London (1961)

    Google Scholar 

  • Das Gupta, M., Gupta, A.S.: Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis. Int. J. Eng. Sci. 17, 271–277 (1979)

    Article  MATH  Google Scholar 

  • Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40(4), 753–767 (1970)

    Article  MATH  Google Scholar 

  • Ganguly, R., Sen, S., Puri, I.K.: Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 271, 63–73 (2004)

    Article  Google Scholar 

  • Gotoh, K., Yamada, M.: Thermal convection in a horizontal layer of magnetic fluids. J. Phys. Soc. Jpn. 51, 3042–3048 (1982)

    Article  Google Scholar 

  • Hennenberg, M., Weyssow, B., Slavtchev, S., Alexandrov, V., Desaive, T.: Rayleigh-Marangoni-Bénard instability of a ferrofluid layer in a vertical magnetic field. J. Magn. Magn. Mater. 289, 268–271 (2005)

    Article  Google Scholar 

  • Hennenberg, M., Weyssow, B., Slavtchev, S., Scheld, B.: Coupling between stationary Marangoni and Cowley-Rosensweig instabilities in a deformable ferrofluid layer. Fluid Dyn. Mater. Proc. 1, 101–107 (2006)

    Google Scholar 

  • Idris, R., Hashim, I.: Effects of controller and cubic temperature profile on onset of Benard–Marangoni convection in ferrofluid. Int. Comm. Heat Mass Trans. 37, 624–628 (2010)

    Article  Google Scholar 

  • Kaloni, P.N., Lou, J.X.: Weakly nonlinear instability of a ferromagnetic fluid rotating about a vertical axis. J. Magn. Magn. Mater. 284, 54–68 (2004)

    Article  Google Scholar 

  • McTague, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51, 133–136 (1969)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S.: Effect of velocity and temperature boundary conditions on convective instability in a ferrofluid layer. ASME J. Heat Transf. 130, 1045021–1045025 (2008)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R.: Bénard–Marangoni ferroconvection with magnetic field dependent viscosity. J. Magn. Magn. Mater. 322, 2256–2263 (2010)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R.: Onset of Bénard-Marangoni ferroconvection with internal heat generation. Microgravity Sci. Technol. 23, 29–39 (2011)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R.: Onset of Marangoni–Bénard ferroconvection with temperature dependent viscosity. Microgravity Sci. Technol. 25, 103–112 (2013a)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S., Srikumar, K.: On the penetrative Benard–Marangoni convection in a ferromagnetic fluid layer. Aero. Sci. Tech. 27, 57–66 (2013b)

    Article  Google Scholar 

  • Nanjundappa, C.E., Shivakumara, I.S., Savitha, B.: Onset of Bénard–Marangoni ferroconvection with a convective surface boundary condition: The effects of cubic temperature profile and MFD viscosity. Int. Comm. Heat Mass Trans. 51, 39–44 (2014a)

    Article  Google Scholar 

  • Nanjundappa, C.E., Prakash, H.N., Shivakumara, I.S., Lee, J.: Effect of temperature dependent viscosity on the onset of Bénard-Marangoni ferroconvection. Int. Comm. Heat Mass Trans. 51, 25–30 (2014b)

    Article  Google Scholar 

  • Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids-A review. Ren. Sustain. Energy Rev. 21, 548–561 (2013)

    Article  Google Scholar 

  • Odenbach, S.: On the stability of a free surface of a magnetic fluid under microgravity. Adv. Space Res. 22, 1169–1173 (1998)

    Article  Google Scholar 

  • Odenbach, S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter 16, 1135–1150 (2004)

    Article  Google Scholar 

  • Odenbach, S., Stork, H.: Shear dependence of þeld-induced contributions to the viscosity of magnetic ßuids at low shear rates. J. Magn. Magn. Mater 183, 188–194 (1998)

    Article  Google Scholar 

  • Prakash, J., Gupta, S.: On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer. J. Magn. Magn. Mater. 345, 201–207 (2013)

    Article  Google Scholar 

  • Qin, Y., Kaloni, P.N.: Nonlinear stability problem of a ferromagnetic fluid with surface tension effect. Eur. J. Mech. B/Fluids 13, 305–321 (1994)

    MATH  MathSciNet  Google Scholar 

  • Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  • Shima, P.D., Philip, J., Raj, B.: Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl. Phys. Letts. 95, 1331121–3 (2009)

    Article  Google Scholar 

  • Shivakumara, I.S., Nanjundappa, C.E.: Effects of Coriolis force and different basic temperature gradients on Marangoni ferroconvection. Acta Mech. 182, 113–124 (2006)

    Article  MATH  Google Scholar 

  • Shivakumara, I.S., Rudraiah, N., Nanjundappa, C.E.: Effect of non-uniform basic temperature gradient on Rayleigh–Bénard–Marangoni convection in ferrofluids. J. Magn. Magn. Mater 248, 379–395 (2002)

    Article  Google Scholar 

  • Shivakumara, I.S., Lee, J., Nanjundappa, C.E., Ravisha, M.: Brinkman–Benard–Marangoni convection in a magnetized ferrofluid saturated porous layer. Int. J. Heat Mass Trans. 53, 5835–5846 (2010)

    Article  MATH  Google Scholar 

  • Shliomis, M.I.: Magnetic fluids. Soviet Phys. Uspekhi (Engl Trans.) 17, 153–169 (1974)

    Article  Google Scholar 

  • Shliomis, M.I.: Effect of viscosity of magnetic suspensions. Soviet Physics JETP 34, 1291–1294 (1972)

    Google Scholar 

  • Stiles, P.J., Kagan, M.J.: Thermoconvective instability of a ferrofluid in a strong magnetic field. J. Colloid Interface Sci. 134, 435–449 (1990)

    Article  Google Scholar 

  • Vaidyanathan, G., Sekar, R., Ramanathan, A.: Effect of magnetic field dependent viscosity on ferroconvection in rotating medium Indian. J. Pure Applied Phys. 40, 159–165 (2002)

    Google Scholar 

  • Venkatasubramanian, S., Kaloni, P.N.: Effects of rotation on the thermoconvective instability of a horizontal layer of ferrofluids. Int. J. Eng. Sci. 32, 237–256 (1994)

    Article  MATH  Google Scholar 

  • Vidal, A., Acrivos, A.: The influence of Coriolis force on surface tension driven convection. J. Fluid Mech. 26, 807–818 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (CEN) gratefully acknowledges the financial support received in the form of a VTU research grant scheme from Visvesvaraya Technological University, Belgaum, Karnataka State, India. The authors wish to thank the reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Nanjundappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjundappa, C.E., Shivakumara, I.S. & Lee, J. Effect of Coriolis Force on Bénard–Marangoni Convection in a Rotating Ferrofluid Layer with MFD Viscosity. Microgravity Sci. Technol. 27, 27–37 (2015). https://doi.org/10.1007/s12217-014-9410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-014-9410-0

Keywords

Navigation