Skip to main content
Log in

Nonlinear static cyclic pushover analysis for flexural failure of reinforced concrete bridge columns with combined damage mechanisms

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In a fixed connection of a reinforced concrete bridge column, experiments have shown that the longitudinal reinforcing bars slip at the interface of the connection under cyclic seismic loading. The bond-slip (or strain penetration) of the longitudinal reinforcing bars causes a pinching effect in the column’s hysteresis curve. The bond-slip (or strain penetration) reduces the column’s stiffness and increases its deformations during an earthquake event, significantly affecting the performance of the column. Significant strength degradation has also been observed after the column reaches its ultimate strength. This study is to model a reinforced concrete column’s performance under cyclic pushover analysis with combined damage mechanisms including concrete cracking, concrete strength degradation due to concrete spalling, longitudinal reinforcing bars buckling, and bond-slip between longitudinal reinforcing bars and concrete. Two multi-scale nonlinear finite element models with and without the bond-slip (or strain penetration) of a reinforced concrete bridge column are proposed. The simulated column’s hysteresis curves under nonlinear cyclic pushover are compared with available experimental data. The results show that the proposed models with bond-slip together with combined damage mechanisms can effectively predict the seismically induced flexural failure behavior of the reinforced concrete bridge columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang Y.S., Li Y.F., Loh C.H.: Experimental study of seismic behaviors of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns. J. Bridge Eng. ASCE 9(4), 391–402 (2004)

    Article  Google Scholar 

  2. Haroun M., Elsanadedy H.: Behavior of cyclically loaded squat reinforced concrete bridge columns upgraded with advanced composite-material jackets. J. Bridge Eng. ASCE 10(6), 741–748 (2005)

    Article  Google Scholar 

  3. Haroun M., Elsanadedy H.: Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. J. Bridge Eng. ASCE 10(6), 749–757 (2005)

    Article  Google Scholar 

  4. Spacone E., Filippou F., Taucer F.: Fiber beam-column model for nonlinear analysis of R/C frames, part I: formulation. Earthq. Eng. Struct. Dyn. 25, 711–725 (1996)

    Article  Google Scholar 

  5. Spacone E., Filippou F., Taucer F.: Fiber beam-column model for nonlinear analysis of R/C frames, part II: applications”. Earthq. Eng. Struct. Dyn. 25, 727–742 (1996)

    Article  Google Scholar 

  6. Lee W.K., Billington S.: Modeling residual displacements of concrete bridge columns under earthquake loads using fiber elements. J. Bridge Eng. ASCE 15(3), 240–249 (2010)

    Article  Google Scholar 

  7. Kim T.H., Lee K.M., Chung Y.S., Shin H.M.: Seismic damage assessment of reinforced concrete bridge columns. Eng. Struct. 27(4), 576–592 (2005)

    Article  Google Scholar 

  8. Park R., Paulay T.: Reinforced Concrete Structures. Wiley, New York (1975)

    Book  Google Scholar 

  9. Girard C., Bastien J.: Finite-element bond-slip model for concrete columns under cyclic loads. J. Struct. Eng. ASCE 128(12), 1502–1510 (2002)

    Article  Google Scholar 

  10. Zhao J., Sritharan S.: Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures. ACI Struct. J. 104(2), 133–141 (2007)

    Google Scholar 

  11. Gomes A., Appleton J.: Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling. Eng. Struct. 19(10), 822–826 (1997)

    Article  Google Scholar 

  12. Tapan M., Aboutaha R.: Strength evaluation of deteriorated RC bridge columns. J. Bridge Eng. ASCE 13(3), 226–236 (2008)

    Article  Google Scholar 

  13. Dhakal R.P., Maekawa K.: Modeling for postyield buckling of reinforcement. J. Struct. Eng. ASCE 128(9), 1139–1147 (2002)

    Article  Google Scholar 

  14. Paulay T., Priestley M.J.N.: Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, New York (1992)

    Book  Google Scholar 

  15. Priestley M.J.N., Seible F., Calvi G.M.: Seismic Design and Retrofit of Bridges. Wiley-Interscience, New York (1996)

    Book  Google Scholar 

  16. Mazzoni S., McKenna F., Scott M., Fenves G.: Open system for earthquake engineering simulation user command-language manual—OpesnSees Version 2.0. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA (2009)

    Google Scholar 

  17. Ju J.W., Chen T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ju J.W., Chen T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sun L.Z., Ju J.W., Liu H.T.: Elastoplastic modeling of metal matrix composites with evolutionary particle debonding. Mech. Mater. 35, 559–569 (2003)

    Article  Google Scholar 

  20. Sun L.Z., Liu H.T., Ju J.W.: Effect of particle cracking on elastoplastic behaviour of metal matrix composites. Int. J. Numer. Methods Eng. 56, 2183–2198 (2003)

    Article  MATH  Google Scholar 

  21. Liu H.T., Sun L.Z., Ju J.W.: An interfacial debonding model for particle-reinforced composites. Int. J. Damage Mech. 13, 163–185 (2004)

    Article  Google Scholar 

  22. Liu H.T., Sun L.Z., Ju J.W.: Elastoplastic modeling of progressive interfacial debonding for particle-reinforced metal matrix composites. Acta Mech. 181(1-2), 1–17 (2006)

    Article  MATH  Google Scholar 

  23. Ju J.W., Ko Y.F., Ruan H.N.: Effective elastoplastic damage mechanics for fiber reinforced composites with evolutionary complete fiber debonding. Int. J. Damage Mech. 15(3), 237–265 (2006)

    Article  Google Scholar 

  24. Ju J.W., Ko Y.F., Ruan H.N.: Effective elastoplastic damage mechanics for fiber reinforced composites with evolutionary partial fiber debonding. Int. J. Damage Mech. 17(6), 493–537 (2008)

    Article  Google Scholar 

  25. Ju J.W., Ko Y.F.: Micromechanical elastoplastic damage modeling of progressive interfacial arc debonding for fiber reinforced composites. Int. J. Damage Mech. 17, 307–356 (2008)

    Article  Google Scholar 

  26. Ju J.W., Ko Y.F., Zhang X.D.: Multi-level elastoplastic damage mechanics for elliptical fiber reinforced composites with evolutionary complete fiber debonding. Int. J. Damage Mech. 18(5), 419–460 (2009)

    Article  Google Scholar 

  27. Ju J.W., Yanase K.: Elastoplastic damage micromechanics for elliptical fiber composites with progressive partial fiber debonding and thermal residual stresses. Theor. Appl. Mech. 35(1–3), 137–170 (2008)

    Article  MATH  Google Scholar 

  28. Ju J.W., Yanase K.: Micromechanical elastoplastic damage mechanics for elliptical fiber-reinforced composites with progressive partial fiber debonding. Int. J. Damage Mech. 18(7), 639–668 (2009)

    Article  Google Scholar 

  29. Ju J.W., Yanase K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215(1), 135–153 (2010)

    Article  MATH  Google Scholar 

  30. Ju J.W., Yanase K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216(1–4), 87–103 (2011)

    Article  MATH  Google Scholar 

  31. Ju J.W., Yanase K.: Size-dependent probabilistic micromechanical damage mechanics for particle reinforced metal matrix composites. Int. J. Damage Mech. 20(7), 1021–1048 (2011)

    Article  Google Scholar 

  32. Xu B.W., Ju J.W., Shi H.S.: Progressive micromechanics modeling for pullout energy of hooked-end steel fiber in cement-based composites. Int. J. Damage Mech. 20(6), 922–938 (2011)

    Article  Google Scholar 

  33. Ko Y.F., Ju J.W.: Effects of fiber cracking on elastoplastic damage behavior of fiber reinforced metal matrix composites. Int. J. Damage Mech. 22(1), 48–67 (2013)

    Article  MathSciNet  Google Scholar 

  34. Ko Y.F., Ju J.W.: New higher-order bounds on effective transverse elastic moduli of three-phase fiber reinforced composites with randomly located and interacting aligned circular fibers. Acta Mech. 223(11), 2437–2458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ko Y.F., Ju J.W.: Effective transverse elastic moduli of three-phase hybrid fiber reinforced composites with randomly located and interacting aligned circular fibers of distinct elastic properties and sizes. Acta Mech. 224(1), 157–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pan H.H., Weng G.J.: Study on the strain-rate sensitivity of cementitious composites. J. Eng. Mech. ASCE 136(9), 1076–1082 (2010)

    Article  Google Scholar 

  37. Shen L., Li J.: Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase. Int. J. Solids Struct. 40, 1393–1409 (2003)

    Article  MATH  Google Scholar 

  38. Shen L., Li J.: Homogenization of a fiber/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. R. Soc. A 461, 1475–1504 (2005)

    Article  Google Scholar 

  39. Saatcioglu M., Razvi S.R.: Strength and ductility of confined concrete. J. Struct. Eng. ASCE 118(6), 1590–1607 (1992)

    Article  Google Scholar 

  40. Chang, G., Mander, J.: Seismic energy based fatigue damage analysis of bridge columns: part I—evaluation of seismic capacity. NCEER Technical Report 94-0006 (1994)

  41. Gomes A., Appleton J.: Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling. Eng. Struct. 19(10), 822–826 (1997)

    Article  Google Scholar 

  42. Dhakal R., Maekawa K.: Modeling for postyield buckled of reinforcement. J. Struct. Eng. 128(9), 1139–1147 (2002)

    Article  Google Scholar 

  43. Menegotto, M., Pinto, P.: Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Symp. Resistance and ultimate deformability of structures acted on by well defined repeated loads, IABSE Reports 13, Lisbon (1973)

  44. Caltrans Seismic Design Criteria, Ver. 1.6. California Department of Transportation, California (2010)

  45. Choi K.K., Xiao Y.: Analytical model of circular CFRP confined concrete-filled steel tubular columns under axial compression. J. Compos. Constr. ASCE 14(1), 125–133 (2010)

    Article  Google Scholar 

  46. Zhang J., Xu S.Y.: Seismic response simulations of bridges considering shear-flexural interaction of columns. Int. J. Struct. Eng. Mech. 31(5), 545–566 (2009)

    Article  Google Scholar 

  47. Zhang J., Xu S.Y., Tang Y.C.: Inelastic displacement demand of bridge columns considering shear-flexure interaction. Earthq. Eng. Struct. Dyn. 40(7), 731–748 (2011)

    Article  Google Scholar 

  48. Xu S.Y., Zhang J.: Hysteretic shear-flexure interaction model of reinforced concrete columns for seismic response assessment of bridges. Earthq. Eng. Struct. Dyn. 40(3), 315–337 (2011)

    Article  Google Scholar 

  49. Xu S.Y., Zhang J.: Axial-shear-flexure interaction hysteretic model for RC bridge columns under combined actions. Eng. Struct. 34(1), 548–563 (2012)

    Article  Google Scholar 

  50. Johnson N., Saiidi M., Sanders D.: Nonlinear earthquake response modeling of a large-scale two-span concrete bridge. J. Bridge Eng. ASCE 14(6), 460–471 (2009)

    Article  Google Scholar 

  51. Melek M., Wallace J.W.: Cyclic behavior of columns with short lap splices. ACI Struct. J. 101(6), 802–811 (2004)

    Google Scholar 

  52. Chang S.Y.: Experimental studies of reinforced concrete bridge columns under axial load plus biaxial bending. J. Struct. Eng. ASCE 136(1), 12–25 (2010)

    Article  Google Scholar 

  53. Gopinath S., Rajasankar J., Iyer N.R.: Nonlinear analysis of RC structures using isotropic damage model. Int. J. Damage Mech. 21(5), 647–669 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fu Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, YF., Phung, C. Nonlinear static cyclic pushover analysis for flexural failure of reinforced concrete bridge columns with combined damage mechanisms. Acta Mech 225, 477–492 (2014). https://doi.org/10.1007/s00707-013-0970-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0970-7

Keywords

Navigation