Skip to main content
Log in

New higher-order bounds on effective transverse elastic moduli of three-phase fiber-reinforced composites with randomly located and interacting aligned circular fibers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A higher-order structure for three-phase composites containing randomly located yet unidirectionally aligned circular fibers is proposed to predict effective transverse elastic moduli based on the probabilistic spatial distribution of circular fibers, the pairwise fiber interactions, and the ensemble-area homogenization method. Specifically, the two inhomogeneity phases feature distinct elastic properties and sizes. In the special event, two-phase composites with same elastic properties and sizes of fibers are studied. Two non-equivalent formulations are considered in detail to derive effective transverse elastic moduli of two-phase composites leading to new higher-order bounds. Furthermore, the effective transverse elastic moduli for an incompressible matrix containing randomly located and identical circular rigid fibers and voids are derived. It is demonstrated that significant improvements in the singular problems and accuracy are achieved by the proposed methodology. Numerical examples and comparisons among our theoretical predictions, available experimental data, and other analytical predictions are rendered to illustrate the potential of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashin Z., Shtrikman S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)

    Article  MathSciNet  Google Scholar 

  2. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1962)

    Article  MathSciNet  Google Scholar 

  3. Hill R.: Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior. J. Mech. Phys. Solids 12, 199–212 (1964)

    Article  MathSciNet  Google Scholar 

  4. Hill R.: Theory of mechanical properties of fiber-strengthened materials: II. Inelastic behavior. J. Mech. Phys. Solids 12, 213–218 (1964)

    Article  MathSciNet  Google Scholar 

  5. Hashin Z., Rosen B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)

    Article  Google Scholar 

  6. Hashin Z.: On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13, 119–134 (1965)

    Article  Google Scholar 

  7. Walpole L.J.: On bounds for overall elastic moduli of inhomogeneous systems: I. J. Mech. Phys. Solids 14, 151–162 (1966)

    Article  MATH  Google Scholar 

  8. Walpole L.J.: On bounds for overall elastic moduli of inhomogeneous Systems: II. J. Mech. Phys. Solids 14, 289–301 (1966)

    Article  Google Scholar 

  9. Walpole L.J.: On the overall elastic moduli of composite materials. J. Mech. Phys. Solids 17, 235–251 (1969)

    Article  MATH  Google Scholar 

  10. Hashin, Z.: Theory of fiber reinforced materials. NASA CR-1974 (1972)

  11. Silnutzer, N.: Effective Constants of Statistically Homogeneous Materials. Ph.D. thesis, University of Pennsylvania (1972)

  12. Milton G.W.: Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30, 177–191 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milton G.W., Phan-Thien N.: New bounds on effective elastic moduli of two-component materials. Proc. R. Soc. A 380, 305–331 (1982)

    Article  MATH  Google Scholar 

  14. Torquato S., Lado F.: Improved bounds of the effective elastic moduli of random arrays of cylinders. J. Appl. Mech. 59, 1–6 (1992)

    Article  MathSciNet  Google Scholar 

  15. Hill R.: Theory of mechanical properties of fiber-strengthened materials: III. Self-consistent model. J. Mech. Phys. Solids 13, 189–198 (1965)

    Article  Google Scholar 

  16. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  17. Christensen R.M., Lo K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  18. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  19. Benveniste Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  20. Weng G.J.: The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Inter. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MATH  Google Scholar 

  21. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mura T.: Micromechanics of Defects in Solids. 2nd edn. Kluwer, The Netherlands (1987)

    Book  Google Scholar 

  23. Honein, E.: Multiple Inclusions in Elastostatics. Ph.D. dissertation at Stanford University (1991)

  24. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, The Netherlands (1993)

    MATH  Google Scholar 

  25. Ju J.W., Chen T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ju J.W., Chen T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ju J.W., Zhang X.D.: Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids Struct. 35(9–10), 941–960 (1998)

    Article  MATH  Google Scholar 

  28. Ju J.W., Yanase K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215(1), 135–153 (2010)

    Article  MATH  Google Scholar 

  29. Ju J.W., Yanase K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216(1–4), 87–103 (2011)

    Article  MATH  Google Scholar 

  30. Lin P.J., Ju J.W.: Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties. Acta Mech. 208, 11–26 (2009)

    Article  MATH  Google Scholar 

  31. Adams D.F., Crane D.A.: Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading. Comput. Struct. 18(6), 1153–1165 (1984)

    Article  MATH  Google Scholar 

  32. Nimmer R.P., Bankert R.J., Russell E.S., Smith G.A., Wright P.K.: Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites. J. Comp. Tech. Res. JCTRER 13, 3–13 (1991)

    Article  Google Scholar 

  33. Doghri I., Friebel C.: Effective elasto-plastic properties of inclusion-reinforced composites. Study of shape, orientation and cyclic response. Mech. Mater. 37, 45–68 (2005)

    Article  Google Scholar 

  34. Ju J.W., Chen T.M.: Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites. Trans ASME, J. Eng. Mater. Tech. 116, 310–318 (1994)

    Article  Google Scholar 

  35. Ju J.W., Tseng K.H.: Effective elastoplastic behavior of two-phase ductile matrix composites: a micromechanical framework. Int. J. Solids Struct. 33, 4267–4291 (1996)

    Article  MATH  Google Scholar 

  36. Ju J.W., Tseng K.H.: Effective elastoplastic algorithms for ductile matrix composites. J. Eng. Mech. ASCE 123, 260–266 (1997)

    Article  Google Scholar 

  37. Ju J.W., Zhang X.D.: Effective elastoplastic behavior of ductile matrix composites containing randomly located aligned circular fibers. Int. J. Solids Struct. 38, 4045–4069 (2001)

    Article  MATH  Google Scholar 

  38. Ju J.W., Sun L.Z.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. Int. J. Solids Struct. 38(2), 183–201 (2001)

    Article  MATH  Google Scholar 

  39. Sun L.Z., Ju J.W.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part II: applications. Int. J. Solids Struct. 38(2), 203–225 (2001)

    Article  Google Scholar 

  40. Ju J.W., Sun L.Z.: A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. ASME 66, 570–574 (1999)

    Article  Google Scholar 

  41. Ju J.W., Lee H.K.: A micromechanical damage model for effective elastoplastic behavior of ductile matrix composites considering evolutionary complete particle debonding. Comput. Methods Appl. Mech. Eng. 183, 201–222 (2000)

    Article  MATH  Google Scholar 

  42. Ju J.W., Lee H.K.: A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. Int. J. Solids Struct. 38, 6307–6332 (2001)

    Article  MATH  Google Scholar 

  43. Sun L.Z., Ju J.W., Liu H.T.: Elastoplastic modeling of metal matrix composites with evolutionary particle debonding. Mech. Mater. 35, 559–569 (2003)

    Article  Google Scholar 

  44. Sun L.Z., Liu H.T., Ju J.W.: Effect of particle cracking on elastoplastic behaviour of metal matrix composites. Int. J. Numer. Meth. Eng. 56, 2183–2198 (2003)

    Article  MATH  Google Scholar 

  45. Liu H.T., Sun L.Z., Ju J.W.: An interfacial debonding model for particle-reinforced composites. Int. J. Damage Mech. 13, 163–185 (2004)

    Article  Google Scholar 

  46. Liu H.T., Sun L.Z.: Effects of thermal residual stresses on effective elastoplastic behavior of metal matrix composites. Int. J. Solids Struct. 41, 2189–2203 (2004)

    Article  MATH  Google Scholar 

  47. Ko, Y.F.: Effective Elastoplastic-Damage Model for Fiber-Reinforced Metal Matrix Composites with Evolutionary Fibers Debonding. Ph.D. Dissertation, University of California, Los Angeles (2005)

  48. Ju J.W., Ko Y.F., Ruan H.N.: Effective elastoplastic damage mechanics for fiber reinforced composites with evolutionary complete fiber debonding. Int. J. Damage Mech. 15(3), 237–265 (2006)

    Article  Google Scholar 

  49. Liu H.T., Sun L.Z., Ju J.W.: Elastoplastic modeling of progressive interfacial debonding for particle-reinforced metal matrix composites. Acta Mech. 181(1–2), 1–17 (2006)

    Article  MATH  Google Scholar 

  50. Ju J.W., Ko Y.F., Ruan H.N.: Effective elastoplastic damage mechanics for fiber reinforced composites with evolutionary partial fiber debonding. Int. J. Damage Mech. 17(6), 493–537 (2008)

    Article  Google Scholar 

  51. Ju J.W., Ko Y.F.: Micromechanical elastoplastic damage modeling of progressive interfacial arc debonding for fiber reinforced composites. Int. J. Damage Mech. 17, 307–356 (2008)

    Article  Google Scholar 

  52. Ju J.W., Yanase K.: Elastoplastic damage micromechanics for elliptical fiber composites with progressive partial fiber debonding and thermal residual stresses. Theor. Appl. Mech. 35(1–3), 137–170 (2008)

    Article  MATH  Google Scholar 

  53. Lee H.K., Ju J.W.: 3-D micromechanics and effective moduli for brittle composites with randomly located interacting microcracks and inclusions. Int. J. Damage Mech. 17(5), 377–417 (2008)

    Article  MathSciNet  Google Scholar 

  54. Ju J.W., Ko Y.F., Zhang X.D.: Multi-level elastoplastic damage mechanics for elliptical fiber reinforced composites with evolutionary complete fiber debonding. Int. J. Damage Mech. 18(5), 419–460 (2009)

    Article  Google Scholar 

  55. Ju J.W., Yanase K.: Micromechanical elastoplastic damage mechanics for elliptical fiber-reinforced composites with progressive partial fiber debonding. Int. J. Damage Mech. 18(7), 639–668 (2009)

    Article  Google Scholar 

  56. Ju J.W., Yanase K.: Size-dependent probabilistic micromechanical damage mechanics for particle reinforced metal matrix composites. Int. J. Damage Mech. 20(7), 1021–1048 (2011)

    Article  Google Scholar 

  57. Hansen J.P., McDonald I.R.: Theory of Simple Liquids. Academic Press, New York (1986)

    Google Scholar 

  58. Zhao Y.H., Tandon G.P., Weng G.J.: Elastic moduli for a class of porous materials. Acta Mech. 76, 105–131 (1989)

    Article  MATH  Google Scholar 

  59. Kondo, K., Saito, N.: The influence of random fiber packing on the elastic properties of unidirectional composites. In: Composites ’86: Recent Advances in Japan and the United States, Proceeding of Japan-U.S. CCM-III (1986)

  60. Uemura M., Yamawaki K., Abe S., Iyama H.: On the stiffness of filament wound materials (in Japanese). Bull. Inst. Space Aeronaut. Sci. Univ. Tokyo 4(3B), 448–463 (1968)

    Google Scholar 

  61. Christensen R.M.: Effective viscous flow properties for fiber suspensions under concentrated conditions. J. Rheol. 37, 103–121 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fu Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, YF., Ju, J.W. New higher-order bounds on effective transverse elastic moduli of three-phase fiber-reinforced composites with randomly located and interacting aligned circular fibers. Acta Mech 223, 2437–2458 (2012). https://doi.org/10.1007/s00707-012-0696-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0696-y

Keywords

Navigation