Skip to main content
Log in

Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, influences of a uniform thermomechanical loading in buckling and free vibration of a curved FG microbeam have been investigated, based on strain gradient theory (SGT) theory and Timoshenko beam model. Distribution of structural materials varies continuously in thickness direction due to power-law exponent. Unlike classical models, this novel model employs three length scale parameters which can capture the size effect. This work is based on SGT theory and Timoshenko beam model. Governing equation of motion and associated boundary condition have been developed based on Hamilton’s principle, which is the specified case of virtual work theorem. In continuance, final differential equations were solved by Navier’s solution method and the results have been presented. Moreover, influences of dimensionless length-to-thickness ratio (aspect ratio), dimensionless length scale parameter, power-law exponent, temperature difference and arc angle for various values of mode numbers on natural frequency and critical temperature by considering temperature-dependent material properties have been investigated. In order to validate accomplished study, some of the results were compared with those of previous works. It has been concluded that applying a thermomechanical loading on a FG microbeam causes the natural frequency to become more sensitive about variations of geometrical, physical and mechanical properties and characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060 (2005)

    Article  ADS  Google Scholar 

  2. R. de Souza Pereira, Atomic force microscopy as a novel pharmacological tool. Biochem. Pharmacol. 62(8), 975–983 (2001)

    Article  Google Scholar 

  3. X. Li et al., Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1), 481–494 (2003)

    Article  MathSciNet  Google Scholar 

  4. J. Pei, F. Tian, T. Thundat, Glucose biosensor based on the microcantilever. Anal. Chem. 76(2), 292–297 (2004)

    Article  Google Scholar 

  5. A. Tounsi et al., Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  6. A. Besseghier et al., Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv Nano Res. 3(1), 29–37 (2015)

    Article  Google Scholar 

  7. S. Benguediab et al., Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. B Eng. 57, 21–24 (2014)

    Article  Google Scholar 

  8. M. Ahouel et al., Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 20(5), 963–981 (2016)

    Article  Google Scholar 

  9. K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. 125, 621–630 (2015)

    Article  Google Scholar 

  10. A.H. Hosseini et al., Axial Vibration of Cracked Nanorods Embedded in Elastic Foundation Based on a Nonlocal Elasticity Model. Sens. Lett. 14(10), 1019–1025 (2016)

    Article  Google Scholar 

  11. O. Rahmani et al., Torsional Vibration of Cracked Nanobeam Based on Nonlocal Stress Theory with Various Boundary Conditions: an Analytical Study. Int. J. Appl. Mech. 07(03), 1550036 (2015)

    Article  Google Scholar 

  12. O. Rahmani, On the flexural vibration of pre-stressed nanobeams based on a nonlocal theory. Acta. Phys. Pol. A. 125(2), 532–533 (2014)

    Article  Google Scholar 

  13. A.A. Jandaghian, O. Rahmani, An Analytical Solution for Free Vibration of Piezoelectric Nanobeams Based on a Nonlocal Elasticity Theory. J. Mech. 32(02), 143–151 (2016)

    Article  Google Scholar 

  14. A. Jandaghian, O. Rahmani, Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater. Struct. 25(3), 035023 (2016)

    Article  ADS  Google Scholar 

  15. A. Giannakopoulos, K. Stamoulis, Structural analysis of gradient elastic components. Int. J. Solids Struct. 44(10), 3440–3451 (2007)

    Article  MATH  Google Scholar 

  16. Y. Liu, J. Reddy, A nonlocal curved beam model based on a modified couple stress theory. Int. J. Struct. Stab. Dyn. 11(03), 495–512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. X.L. Jia, J. Yang, S. Kitipornchai, Characterization of FGM micro-switches under electrostatic and Casimir forces. IOP Conf. Ser. Mater, Sci. Eng. 10, 012178 (2010)

    Article  Google Scholar 

  18. X.L. Jia et al., Forced Vibration of Electrically Actuated FGM Micro-Switches. Proced. Eng. 14, 280–287 (2011)

    Article  Google Scholar 

  19. X. Jia et al., Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19(11), 115028 (2010)

    Article  ADS  Google Scholar 

  20. R.C. Carbonari, E.C. Silva, G.H. Paulino, Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int. J. Numer. Meth. Eng. 77(3), 301–336 (2009)

    Article  MATH  Google Scholar 

  21. R. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field. J. Sound Vib. 309(3), 600–612 (2008)

    Article  ADS  Google Scholar 

  22. H. Chen et al., Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study. J. Nanomater. 2008, 47 (2008)

    Google Scholar 

  23. D. Hasanyan, R. Batra, S. Harutyunyan, Pull-in instabilities in functionally graded microthermoelectromechanical systems. J. Therm. Stresses 31(10), 1006–1021 (2008)

    Article  Google Scholar 

  24. F. Lun et al., Design and fabrication of micro-optomechanical vibration sensor. Microfabr. Technol. 120(1), 61–64 (2006)

    Google Scholar 

  25. A. Witvrouw, A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications. in Materials Science Forum. (2005). Trans Tech Publ

  26. J. Zhang, Y. Fu, Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47(7), 1649–1658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Misagh, H. Seyed, Amirhosein, A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions. Smart Mater. Struct. 25(8), 085005 (2016)

    Article  Google Scholar 

  28. S.A.H. Hosseini, O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122(3), 1–11 (2016)

    Article  Google Scholar 

  29. S.A.H. Hosseini, O. Rahmani, Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity. J. Therm. Stresses 39(10), 1252–1267 (2016)

    Article  Google Scholar 

  30. K. Al-Basyouni, A. Tounsi, S. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. 125, 621–630 (2015)

    Article  Google Scholar 

  31. O. Rahmani, S.S. Asemani, S.A.H. Hosseini, Study the Buckling of Functionally Graded Nanobeams in Elastic Medium with Surface Effects Based on a Nonlocal Theory. J. Comput. Theor. Nanosci. 12(10), 3162–3170 (2015)

    Article  Google Scholar 

  32. S.A.H. Hosseini, O. Rahmani, Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory. Meccanica. (2016). 10.1007/s11012-016-0491-2

    Google Scholar 

  33. S. Sahmani et al., Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos. B Eng. 51, 44–53 (2013)

    Article  Google Scholar 

  34. Y. Tadi Beni, F. Mehralian, and H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  35. I. Belkorissat et al., On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos. Struct. 18(4), 1063–1081 (2015)

    Article  Google Scholar 

  36. F. Bounouara et al., A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  37. A. Tounsi, M.S.A. Houari, S. Benyoucef, A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24(1), 209–220 (2013)

    Article  Google Scholar 

  38. B. Bouderba, M.S.A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos. Struct. 14(1), 85–104 (2013)

    Article  Google Scholar 

  39. M. Zidi et al., Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24–34 (2014)

    Article  Google Scholar 

  40. A. Hamidi et al., A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos. Struct. 18(1), 235–253 (2015)

    Article  Google Scholar 

  41. N. Fleck, J. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Shu, N. Fleck, The prediction of a size effect in microindentation. Int. J. Solids Struct. 35(13), 1363–1383 (1998)

    Article  MATH  Google Scholar 

  43. D. Lam et al., Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  44. K. Lazopoulos, On the gradient strain elasticity theory of plates. Eur. J. Mech.-A/Solids 23(5), 843–852 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Papargyri-Beskou, D. Beskos, Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78(8), 625–635 (2008)

    Article  ADS  MATH  Google Scholar 

  46. K. Lazopoulos, On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36(7), 777–783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Kong et al., Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Wang, J. Zhao, S. Zhou, A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech.-A/Solids 29(4), 591–599 (2010)

    Article  ADS  Google Scholar 

  49. B. Wang et al., A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech.-A/Solids 30(4), 517–524 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Kahrobaiyan et al., A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011)

    Article  MathSciNet  Google Scholar 

  51. B. Akgöz, Ö. Civalek, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  Google Scholar 

  52. M. Kahrobaiyan et al., Torsion of strain gradient bars. Int. J. Eng. Sci. 49(9), 856–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Zhao et al., Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36(6), 2674–2686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Asghari et al., A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223(6), 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Ramezani, A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non-Linear Mech. 47(8), 863–873 (2012)

    Article  ADS  Google Scholar 

  56. S. Karparvarfard, M. Asghari, R. Vatankhah, A geometrically nonlinear beam model based on the second strain gradient theory. Int. J. Eng. Sci. 91, 63–75 (2015)

    Article  MathSciNet  Google Scholar 

  57. R. D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  58. M. Bourada et al., A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  59. Z. Belabed et al., An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. B Eng. 60, 274–283 (2014)

    Article  Google Scholar 

  60. H. Hebali et al., New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  61. M. Bennoun, M.S.A. Houari, A. Tounsi, A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  62. A. Mahi, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  63. M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandwich Struct. Mater. 16(3), 293–318 (2014)

    Article  Google Scholar 

  64. V. Refaeinejad, O. Rahmani, S.A.H. Hosseini, Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures. Mech. Adv. Mater. Struct. pp. 00–00 (2016)

  65. H. Bellifa et al., Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38(1), 265–275 (2016)

    Article  Google Scholar 

  66. B. Akgöz, Ö. Civalek, Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013)

    Article  Google Scholar 

  68. J. Lei et al., Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int. J. Eng. Sci. 72, 36–52 (2013)

    Article  Google Scholar 

  69. Y. Li, W. Feng, Z. Cai, Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Compos. Struct. 115, 41–50 (2014)

    Article  Google Scholar 

  70. R. Ansari, R. Gholami, S. Sahmani, Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83(10), 1439–1449 (2013)

    Article  MATH  Google Scholar 

  71. M. Hajianmaleki, M.S. Qatu, Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions. Compos. B Eng. 43(4), 1767–1775 (2012)

    Article  Google Scholar 

  72. L. Galuppi, G. Royer-Carfagni, Shear coupling effects of the core in curved sandwich beams. Compos. B Eng. 76, 320–331 (2015)

    Article  Google Scholar 

  73. D. Derakhshan, M. Komeili, A.S. Milani, An analytical approach to the deflection analysis of woven preforms and composites under tensile loading using the Winkler theory of curved beams. Comput. Mater. Sci 96(Part B), 403–410 (2015)

    Article  Google Scholar 

  74. F. Yang et al., Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  75. M. Şimşek, J. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rahmani.

Appendix

Appendix

$$n = 2l_{0}^{2} ,\quad m = 2l_{1}^{2} ,\quad c = \frac{1}{4}l_{2}^{2}$$
(32)
$$\begin{aligned} \begin{array}{*{20}l} {J_{1} = \left( {\frac{27}{15}m} \right),} \hfill & {J_{2} = \left( {n + \frac{1}{5}m} \right),} \hfill & {J_{3} = \left( {n + \frac{3}{5}m} \right)} \hfill \\ {J_{4} = \left( {\frac{8}{15}m + c} \right), \, } \hfill & {J_{5} = \left( {\frac{16}{15}m + c} \right), \, } \hfill & {J_{6} = \left( {\frac{7}{6}m + c} \right)} \hfill \\ {J_{7} = \left( {n + \frac{13}{6}m} \right), \, } \hfill & { \, J_{8} = \left( {\frac{12}{5}m + c} \right),} \hfill & {J_{9} = \left( {n + \frac{13}{5}m} \right)} \hfill \\ {J_{10} = \left( {\frac{4}{15}m + c} \right), \, } \hfill & {J_{11} = \left( {n + \frac{4}{15}m} \right), \, } \hfill & {J_{12} = \left( {n + \frac{76}{15}m} \right)} \hfill \\ {J_{13} = \left( {n + m} \right),} \hfill & {J_{14} = \left( {\frac{29}{15}m + c} \right),} \hfill & { \, J_{15} = \left( {\frac{7}{15}m} \right)} \hfill \\ {J_{16} = \left( n \right),} \hfill & { \, J_{17} = \left( {\frac{22}{15}m} \right), \, } \hfill & {J_{18} = \left( {\frac{28}{15}m + c} \right)} \hfill \\ {J_{19} = \left( m \right),} \hfill & { \, J_{20} = \left( {n + \frac{8}{15}m} \right), \, } \hfill & { \, J_{21} = \left( {n + \frac{6}{5}m} \right)} \hfill \\ {J_{22} = \left( {\frac{37}{15}m + c} \right)} \hfill & {} \hfill & {} \hfill \\ \end{array} \hfill \\ \hfill \\ \end{aligned}$$
(33)
$$\begin{array}{*{20}l} {I_{1} = \left( {J_{3} + J_{14} } \right),} \hfill & {I_{2} = \left( {J_{1} + J_{2} + J_{5} } \right), \, } \hfill & {I_{3} = \left( {J_{2} + J_{18} } \right), \, } \hfill & {I_{4} = \left( {J_{4} + J_{7} } \right)} \hfill \\ {I_{5} = \left( {J_{4} + J_{9} } \right),} \hfill & {I_{6} = \left( {J_{4} + J_{12} } \right),} \hfill & {I_{7} = \left( {J_{3} + J_{8} } \right),} \hfill & {I_{8} = \left( {J_{3} + J_{15} } \right)} \hfill \\ {I_{9} = \left( {J_{5} + J_{13} } \right), \, } \hfill & {I_{10} = \left( {J_{4} + J_{16} } \right),} \hfill & { \, I_{11} = \left( {J_{14} + J_{21} } \right),} \hfill & {I_{12} = \left( {J_{10} + J_{12} } \right)} \hfill \\ {I_{13} = \left( {J_{5} + J_{16} } \right)} \hfill & {} \hfill & {} \hfill & {} \hfill \\ \end{array}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. et al. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties. Appl. Phys. A 123, 4 (2017). https://doi.org/10.1007/s00339-016-0591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0591-9

Navigation