Skip to main content

Advertisement

Log in

A finite strain model of combined viscoplasticity and rate-independent plasticity without a yield surface

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new internal variable formulation dealing with mechanisms with different characteristic times in solid materials is proposed within a finite deformation framework. The framework relies crucially on the consistent combination of a general viscoplastic theory and a rate-independent theory (generalized plasticity) which does not involve the yield surface concept as a basic ingredient. The formulation is developed initially in a material setting and then is extended to a covariant one by applying some basic elements and results from the tensor analysis on manifolds. The covariant balance of energy is systematically employed for the derivation of the mechanical state equations. It is shown that unlike the case of finite elasticity, for the proposed formulation the covariant balance of energy does not yield the Doyle–Ericksen formula, unless a further assumption is made. As an application, by considering the material (intrinsic) metric as a primary internal variable accounting for both elastic and viscoplastic (dissipative) phenomena within the body, a constitutive model is proposed. The ability of the model in simulating several patterns of the complex response of metals under quasi-static and dynamic loadings is assessed by representative numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau H.G., Weiner J.H., Zwicky E.E. Jr: Thermal stress in a viscoelastic-plastic plate with temperature dependent yield stress. J. Appl. Mech. ASME 27, 297–302 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ivlev, D.D.: On the theory of transient creep. In: Problems of continuum mechanics (English Edition), Society for industrial and applied mathematics, Philadelphia, pp. 198–201 (1961)

  3. Naghdi P.M., Murch S.A.: On the mechanical behavior of viscoelastic/plastic solids. J. Appl. Mech. ASME 30, 321–328 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodner S.R., Partom Y.: Constitutive equations for elastic–viscoplastic strain-hardening materials. J. Appl. Mech. ASME 42, 385–389 (1975)

    Article  Google Scholar 

  5. Rubin M.B.: An elastic–viscoplastic model for large deformation. Int. J. Eng. Sci. 24, 1083–1095 (1986)

    Article  MATH  Google Scholar 

  6. Rubin M.B.: An elastic–viscoplastic model for metals subjected to high compression. J. Appl. Mech. ASME 54, 532–538 (1987)

    Article  MATH  Google Scholar 

  7. Rubin M.B.: An elastic–viscoplastic model exhibiting continuity of solid and fluid states. Int. J. Eng. Sci. 25, 1175–1191 (1987)

    Article  MATH  Google Scholar 

  8. Bertram, A., Böhlke, T.,Estrin, Y., Lenz, W.: Effect of geometric nonlinearity on large strain deformation: a case study. Proceedings of the 9th International Conference on the Mechanical Behavior of Materials (ICM), Genf (2003)

  9. Malvern L.E.: The propagation of longitudinal waves of plastic deformation in a bar exhibiting a strain rate effect. J. Appl. Mech. ASME 18, 203–208 (1951)

    MathSciNet  Google Scholar 

  10. Perzyna P.: The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math. 20, 321–332 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Perzyna P.: On the thermomechanical foundations of viscoplasticity. In: Lindolm, U.S. (ed.) Mechanical Behavior of Materials Under Dynamic Loads, pp. 61–76. Springer, New York (1968)

    Chapter  Google Scholar 

  12. Phillips A., Wu H.C.: A theory of viscoplasticity. Int. J. Solids Struct. 9, 15–30 (1973)

    Article  MATH  Google Scholar 

  13. Chaboche J.L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. Bull. Acad. Polonaise Sci. 25, 33–42 (1977)

    Google Scholar 

  14. Lubliner J.: A simple theory of plasticity. Int. J. Solids Struct. 10, 313–319 (1974)

    Article  MathSciNet  Google Scholar 

  15. Lubliner J.: A maximum-dissipation principle in generalized plasticity. Acta Mech. 52, 225–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubliner, J.: Non-isothermal generalized plasticity. In: Bui, H.D., Nyugen, Q.S. (eds.) Thermomechanical Couplings in Solids, pp. 121–133 (1987)

  17. Panoskaltsis V.P., Polymenakos L.C., Soldatos D.: Eulerian structure of generalized plasticity: theoretical and computational aspects. J. Eng. Mech. ASCE 134, 354–361 (2008)

    Article  Google Scholar 

  18. Panoskaltsis V.P., Soldatos D., Triantafyllou S.P.: The concept of physical metric in rate-independent generalized plasticity. Acta Mech. 221, 49–64 (2011)

    Article  MATH  Google Scholar 

  19. Naghdi P.M.: A critical review of the state of finite plasticity. Zeit. Angew. Math. Phys. 41, 315–387 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Panoskaltsis V.P., Polymenakos L.C., Soldatos D.: On large deformation generalized plasticity. J. Mech. Mater. Struct. 3, 441–457 (2008)

    Article  Google Scholar 

  21. Bishop R.L., Goldberg I.: Tensor Analysis on Manifolds. Dover Publications, New York (1980)

    Google Scholar 

  22. Abraham R., Marsden J.E., Ratiu T: Manifolds, Tensor Analysis and Applications. 2nd edn. Springer, New Work (1988)

    Book  MATH  Google Scholar 

  23. Lovelock D., Rund H.: Tensors, Differential Forms and Variational Principles. Dover Publications, New York (1989)

    Google Scholar 

  24. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)

    Google Scholar 

  25. Stumpf H., Hoppe U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z Angew. Math. Mech. 77, 327–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yavari A., Marsden J.E., Ortiz M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 1–53 (2006)

    Article  MathSciNet  Google Scholar 

  27. Simo J.C., Marsden J.E.: On the rotated stress tensor and the material version of the Doyle–Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yavari A., Marsden J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63, 11–42 (2009)

    Article  MathSciNet  Google Scholar 

  29. Doyle T.C., Ericksen J.L.: Nonlinear Elasticity. Advances in Applied Mechanics. Academic Press, New York (1956)

    Google Scholar 

  30. Valanis K.C.: The concept of physical metric in thermodynamics. Acta Mech. 113, 169–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Valanis K.C., Panoskaltsis V.P.: Material metric, connectivity and dislocations in continua. Acta Mech. 175, 77–103 (2005)

    Article  MATH  Google Scholar 

  32. Taleb L., Cailletaud G.: An updated version of the multimechanism model for cyclic plasticity. Int. J. Plast. 26, 859–874 (2010)

    Article  MATH  Google Scholar 

  33. Wolf, M., Böhm, M., Taleb, L.: Two-mechanism models with plastic mechanisms—modeling in continuum-mechanical framework. Tech. Rep. 10–05, Berichte aus der Technomathematic, FB 3, Universität Bremen (2010)

  34. Saï K.: Multi-mechanism models: present state and future trends. Int. J. Plast. 27, 250–281 (2011)

    Article  Google Scholar 

  35. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition Part I: continuum formulation. Comput. Methods Appl. Mech. Eng. 66, 199–219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miehe C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35, 3859–3897 (1998)

    Article  MATH  Google Scholar 

  37. Duszek M.K., Perzyna P.: The localization of plastic deformation in thermoplastic solids. Int. J. Solids Struct. 27, 1419–1443 (1991)

    Article  MATH  Google Scholar 

  38. Le K.H., Stumpf H.: Constitutive equations for elastoplastic bodies at finite strain: thermodynamic implementation. Acta Mech. 100, 155–170 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Brocks, W., Lin, R.: An extended Chaboche viscoplastic law at finite strains and its numerical implementation. Report GKSS 2003/20 Forschungszentrum Geesthacht GmbH, Geesthacht (2003)

  40. Eisenberg M.A., Phillips A.: A theory of plasticity with non-coincident yield and loading surfaces. Acta Mech. 11, 247–260 (1971)

    Article  MATH  Google Scholar 

  41. Lubliner J.: On loading, yield and quasi-yield hypersurfaces in plasticity theory. Int. J. Solids Struct. 11, 1011–1016 (1975)

    Article  MATH  Google Scholar 

  42. Lubliner J.: On the structure of the rate equations of materials with internal variables. Acta Mech. 17, 109–119 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R. with the collaboration of Sniatycki, J., Yasskin, P.B.: Momentum maps and classical fields. Part I: covariant field theory. arXiv. Physics/9801019v2 (2004)

  44. Maugin G.A.: The Thermodynamics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  45. Mariano P.M.: Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bloch A., Krishnaprasad P.S., Marsden J.E., Ratiu T.S.: The Euler-Poincaré equations and double bracket dissipation. Commun. Math. Phys. 174, 1–42 (1996)

    Article  MathSciNet  Google Scholar 

  47. Mariano P.M.: Mechanics of complex bodies: commentary on the unified modeling of material substructures. Theor. Appl. Mech. 35, 235–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gurtin M.E., Anand L.: The decomposition F = F e F p, material symmetry, and plastic irrotationality for solids that are isotropic - viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005)

    Article  MATH  Google Scholar 

  50. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1997)

    Google Scholar 

  51. Bodner S.R.: Constitutive equations for dynamic material behavior. In: Lindolm, U.S. (ed.) Mechanical Behavior of Materials Under Dynamic Loads, pp. 176–190. Springer, New York (1968)

    Chapter  Google Scholar 

  52. American Society for Metals: Metals Handbook, 9th edn (1989)

  53. Ogden R.W.: Non-Linear Elastic Deformations. Dover Publications, New York (1997)

    Google Scholar 

  54. Panoskaltsis, V.P., Lubliner, J., Monteiro, P.J.M.: A viscoelastic-plastic-damage model for concrete. In: Desai, C.S. et al. (eds.) Constitutive Laws for Engineering Materials, pp. 317–320. ASME Press, New York (1991)

  55. Panoskaltsis V.P., Lubliner J., Monteiro P.J.M.: Rate dependent plasticity and damage for concrete. In: Brown, P.W. (ed.) Cement Manufacture and Use, pp. 27–40. ASCE Special Publication, ASCE, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Panoskaltsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panoskaltsis, V.P., Polymenakos, L.C. & Soldatos, D. A finite strain model of combined viscoplasticity and rate-independent plasticity without a yield surface. Acta Mech 224, 2107–2125 (2013). https://doi.org/10.1007/s00707-012-0767-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0767-0

Keywords

Navigation