Skip to main content
Log in

Waves in microstructured solids: a unified viewpoint of modeling

  • Review Article
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The basic ideas for describing the dispersive wave motion in microstructured solids are discussed in the one-dimensional setting because then the differences between various microstructure models are clearly visible. An overview of models demonstrates a variety of approaches, but the consistent structure of the theory is best considered from the unified viewpoint of internal variables. It is shown that the unification of microstructure models can be achieved using the concept of dual internal variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brillouin L.: Wave Propagation and Group Velocity. Academic Press, New York (1960)

    MATH  Google Scholar 

  2. Maugin G.A.: On some generalizations of Boussinesq and KdV systems. Proc. Estonian Acad. Sci. Phys. Mat. 44, 40–55 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Santosa F., Symes W.W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fish J., Chen W., Nagai G.: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Meth. Engng. 54, 331–346 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Askes H., Metrikine A.V.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure part 1: generic formulation. Eur. J. Mech. A/Solids 21, 555–572 (2002)

    Article  MATH  Google Scholar 

  6. Erofeyev V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  7. Love A.E.H.: Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  8. Graff K.F.: Wave Motion in Elastic Solids. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  9. Maugin G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  10. Wang Z.-P., Sun C.T.: Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36, 473–485 (2002)

    Article  MATH  Google Scholar 

  11. Wang L.-L.: Foundations of Stress Waves. Elsevier, Amsterdam (2007)

    Google Scholar 

  12. Metrikine A.V.: On causality of the gradient elasticity models. J. Sound Vibr. 297, 727–742 (2006)

    Article  MathSciNet  Google Scholar 

  13. Papargyri-Beskou S., Polyzos D., Beskos D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751–3759 (2009)

    Article  MATH  Google Scholar 

  14. Engelbrecht J., Pastrone F.: Waves in microstructured solids with nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Mat. 52, 12–20 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Mindlin R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engelbrecht J., Berezovski A., Pastrone F., Braun M.: Waves in microstructured materials and dispersion. Phil. Mag. 85, 4127–4141 (2005)

    Article  Google Scholar 

  17. Horstemeyer M.F., Bammann D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plasticity 26, 1310–1334 (2010)

    Article  Google Scholar 

  18. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  19. Maugin G.A., Muschik W.: Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    Article  MATH  Google Scholar 

  20. Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)

    Article  Google Scholar 

  21. Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)

    Article  MATH  Google Scholar 

  22. Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)

    Article  MATH  Google Scholar 

  23. Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  24. Berezovski A., Engelbrecht J., Maugin G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  25. Rice J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  26. Muschik W.: Aspects of Non-Equilibrium Thermodynamics. World Scientific, Singapore (1990)

    Google Scholar 

  27. Askes H., Aifantis E.C.: Gradient elasticity theories in statics and dynamics—a unification of approaches. Int. J. Fract. 139, 297–304 (2006)

    Article  MATH  Google Scholar 

  28. Askes H., Metrikine A.V., Pichugin A.V., Bennett T.: Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Phil. Mag. 88/28, 3415–3443 (2008)

    Article  Google Scholar 

  29. Engelbrecht J., Cermelli P., Pastrone F.: Wave hierarchy in microstructured solids. In: Maugin, G.A. (eds) Geometry, Continua and Microstructure, pp. 99–111. Hermann Publ., Paris (1999)

    Google Scholar 

  30. Berezovski A., Engelbrecht J., Maugin G.A.: One-dimensional microstructure dynamics. In: Ganghoffer, J.-F., Pastrone, F. (eds) Mechanics of Microstructured Solids: Cellular Materials, Fibre Reinforced Solids and Soft Tissues. Series: Lecture Notes in Applied and Computational Mechanics, pp. 21–28. Springer, Berlin (2009)

    Google Scholar 

  31. Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with internal variables. Arch. Appl. Mech. 81, 229–240 (2011)

    Article  Google Scholar 

  32. Askes H., Metrikine A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42, 187–202 (2005)

    Article  MATH  Google Scholar 

  33. Berezovski A., Engelbrecht J., Peets T.: Multiscale modelling of microstructured solids. Mech. Res. Commun. 37, 531–534 (2010)

    Article  Google Scholar 

  34. Pastrone F., Cermelli P., Porubov A.: Nonlinear waves in 1-D solids with microstructure. Mater. Phys. Mech. 7, 9–16 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezovski, A., Engelbrecht, J. & Berezovski, M. Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech 220, 349–363 (2011). https://doi.org/10.1007/s00707-011-0468-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0468-0

Keywords

Navigation