Skip to main content
Log in

Non-uniform eigenstrain induced anti-plane stress field in an elliptic inhomogeneity embedded in anisotropic media with a single plane of symmetry

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A closed-form solution is derived for an anti-plane stress field emanating from non-uniform eigenstrains in an elliptic anisotropic inhomogeneity embedded in anisotropic media with one elastic plane of symmetry. The prescribed eigenstrains are characterized by linear functions of the inhomogeneity in Cartesian coordinates. By means of the polynomial conservation theorem, use of complex function method and conformal transformation, explicit expressions for stresses at the interior boundary of the matrix and the strain energy for the elastic inhomogeneity/matrix system are obtained in terms of coefficients in the linear functions. The coefficients are evaluated analytically using the principle of minimum potential energy of the elastic system, leading to the anti-plane stress field. The resulting solution is verified by means of the continuity condition for the shear stress at the interface between the elliptic inhomogeneity and matrix. The present solution is shown to reduce to known results for uniform eigenstrains with illustration by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A241, 376–396 (1957)

    MathSciNet  Google Scholar 

  2. Eshelby J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A252, 561–569 (1959)

    MathSciNet  Google Scholar 

  3. Eshelby J.D.: Elastic inclusion and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds) Progress in Solid Mechanics, vol. 2., pp. 89–140. North-Holland, Amsterdam (1961)

    Google Scholar 

  4. Bacon D.J., Barnett D.M., Scattergood R.O.: The anisotropic continuum theory of lattice defects. Prog. Mater. Sci. 23, 51–262 (1978)

    Article  Google Scholar 

  5. Willis J.R.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mura T.: Micromechanics of defects in solids, 2nd edn. Martinus-Nijhoff, Dordrecht (1987)

    Google Scholar 

  7. Ting T.C.T.: Anisotropic elasticity: theory and applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  8. Nemat-Nasser S., Hori M.: Micromechanics: overall properties of heterogeneous Solids. Elsevier, New York (1999)

    Google Scholar 

  9. Markov K., Preziosi L.: Heterogeneous media: micromechanics modeling methods and simulations. Birkhäuser Verlag, Switzerland (2000)

    MATH  Google Scholar 

  10. Buryachenko V.A.: Multiparticle effective field and related methods in micromechanics of composite materials. Appl. Mech. Rev. 54, 1–47 (2001)

    Article  Google Scholar 

  11. Hardiman N.J.: Elliptic elastic inclusion in an infinite elastic plate. Q. J. Mech. Appl. Math. 7, 226–230 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  12. Asaro R.J., Barnett D.M.: The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. J. Mech. Phys. Solids 23, 77–83 (1975)

    Article  MATH  Google Scholar 

  13. Luo H.A., Weng G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka’s method. Mech. Mater. 6, 347–361 (1987)

    Article  Google Scholar 

  14. Walpole L.J.: The Elastic field of an inclusion in an anisotropic medium. Proc. R. Soc. Lond. A 300, 270–289 (1967)

    Article  MATH  Google Scholar 

  15. Kinoshita N., Mura T.: Elastic fields of inclusions in anisotropic media. Phys. Status Solid A 5, 759–768 (1971)

    Article  Google Scholar 

  16. Kinoshita N., Mura T.: An ellipsoidal inclusion with polynomial eigenstrains. Q. Appl. Math. 44, 195–199 (1986)

    MATH  MathSciNet  Google Scholar 

  17. Mura T., Kinoshita N.: The polynomial eigenstrain problem for an anisotropic ellipsoidal inclusion. Phys. Status Solidi A 48, 447–450 (1978)

    Article  Google Scholar 

  18. Rahman M.: The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain. ASME J. Appl. Mech. 69, 593–601 (2002)

    MATH  Google Scholar 

  19. Lubarda V.A., Markenscoff X.: On the absence of Eshelby property for non-ellipsoidal inclusions. Int. J. Solids Struct. 35, 3405–3411 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Markenscoff X.: On the shape of the Eshelby inclusions. J. Elast. 44, 163–166 (1998)

    Google Scholar 

  21. Markenscoff X.: Inclusions with constant eigenstress. J. Mech. Phys. Solids 46, 2297–2301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Markenscoff X.: Inclusions of uniform eigenstrains and constant or other stress dependence. ASME J. Appl. Mech. 65, 863–866 (1998)

    Google Scholar 

  23. Sendeckyj, G.P.: Ellipsoidal inhomogeneity problem. Ph.D. dissertation. Northwestern University, Evanston (1967)

  24. Moschovidis Z.A., Mura T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. ASME J. Appl. Mech. 42, 847–852 (1975)

    MATH  Google Scholar 

  25. Shodja H.M., Sarvestani A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. ASME J. Appl. Mech. 68, 3–10 (2001)

    MATH  Google Scholar 

  26. Sharma P., Sharma R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. ASME J. Appl. Mech. 70, 418–425 (2003)

    Article  MATH  Google Scholar 

  27. Willis J.R.: Anisotropic elastic inclusion problems. Q.J. Mech. Appl. Math. 17, 157–174 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chen W.T.: On the elliptic elastic inclusion in an anisotropic medium. Q. J. Mech. Appl. Math. 20, 307–313 (1967)

    Article  MATH  Google Scholar 

  29. Yang H.C., Chou Y.T.: Antiplane strain problems of an elliptic inclusion in an anisotropic medium. ASME J. Appl. Mech. 44, 437–441 (1977)

    MATH  Google Scholar 

  30. Bhargava R.D., Radhakrishna H.C.: Elliptic inclusions in orthotropic media. J. Phys. Soc. Japan 19, 396–405 (1964)

    Article  MathSciNet  Google Scholar 

  31. Yang H.C., Chou Y.T.: Generalized plane problems of elastic inclusions in anisotropic solids. ASME J. Appl. Mech. 43, 424–430 (1976)

    MATH  Google Scholar 

  32. Withers P.J.: The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos. Mag. A. 59, 759–781 (1989)

    Article  Google Scholar 

  33. Rahman M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space: Part I. J. Appl. Mech. 66, 612–620 (1999)

    Article  Google Scholar 

  34. Rahman M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space: Part II: solution of the integral equations. J. Appl. Mech. 66, 621–630 (1999)

    Article  Google Scholar 

  35. Yu H.Y., Sanday S.C., Chang C.I.: Elastic inclusion and inhomogeneities in transversely isotropic solids. Proc. R. Soc. Lond. A444, 239–252 (1994)

    Google Scholar 

  36. Ru C.Q.: Analytical solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. J. Appl. Mech. 66, 315–322 (1999)

    Article  MathSciNet  Google Scholar 

  37. Nie G.H., Guo L., Chan C.K., Shin F.G.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots. Int. J. Solids Struct. 44, 3575–3593 (2007)

    Article  MATH  Google Scholar 

  38. Roy S., Nie G.H., Karedla R., Dharani L.: Stress intensity factor for an elliptic inclusion in orthotropic laminates subjected to freeze-thaw: model verification. Polym. Polym. Compos. 10, 571–588 (2002)

    Google Scholar 

  39. Nie G.H., Roy S., Dutta P.K.: Failure in composite materials due to volumetric expansion of freezing moisture. J. Cold Reg. Eng 18, 135–154 (2004)

    Article  Google Scholar 

  40. Mushkelishvili, N.I.: Some basic problems of the mathematical theory of elasticity. Groningen Publisher (1953)

  41. Zhong W.F., Nie G.H.: The scattering of SH waves by numerous inhomogeneities in an anisotropic body. Acta Mech. Solid. Sin. 1, 81–96 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, G.H., Chan, C.K., Luo, L. et al. Non-uniform eigenstrain induced anti-plane stress field in an elliptic inhomogeneity embedded in anisotropic media with a single plane of symmetry. Acta Mech 206, 23–37 (2009). https://doi.org/10.1007/s00707-008-0083-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0083-x

Keywords

Navigation