Skip to main content
Log in

MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The steady laminar MHD boundary-layer flow past a wedge immersed in an incompressible micropolar fluid in the presence of a variable magnetic field is investigated. The governing partial differential equations are transformed to the ordinary differential equations using similarity variables, and then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results show that the micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow and heat transfer characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen A. C. (1966). Theory of micropolar fluids. J. Math. Mech. 16: 1–18

    MathSciNet  Google Scholar 

  2. Eringen A. C. (1972). Theory of thermomicropolar fluids. J. Math. Anal. Appl. 38: 480–496

    Article  MATH  Google Scholar 

  3. Ariman T., Turk M. A. and Sylvester N. D. (1973). Microcontinuum fluids mechanics – a review. Int. J. Engng. Sci. 11: 905–930

    Article  Google Scholar 

  4. Ariman T., Turk M. A. and Sylvester N. D. (1974). Applications of microcontinuum fluids mechanics. Int. J. Engng. Sci. 12: 273–293

    Article  Google Scholar 

  5. Kim Y. J. (1999). Thermal boundary layer flow of a micropolar fluid past a wedge with constant wall temperature. Acta Mech. 138: 113–121

    Article  MATH  Google Scholar 

  6. Kim Y. J. and Kim T. A. (2003). Convective micropolar boundary layer flows over a wedge with constant surface heat flux. Int. J. Appl. Mech. Engng. 8: 147–153, Special issue: ICER

    MATH  Google Scholar 

  7. Falkner V. M. and Skan S. W. (1931). Some approximate solutions of the boundary layer equation. Phil. Mag. 12: 865–896

    MATH  Google Scholar 

  8. Hady F. M. and Hassanien I. A. (1985). Effect of transverse magnetic field and porosity on the Falkner–Skan flows of a non-Newtonian fluid. Astrophys. Space Sci. 112: 381–390

    Article  MATH  Google Scholar 

  9. Watanabe T. and Pop I. (1993). Magnetohydrodynamic free convection flow over a wedge in the presence of a transverse magnetic field. Int. Comm. Heat Mass Transf. 20: 871–881

    Article  Google Scholar 

  10. Kafoussias N. G. and Nanousis N. D. (1997). Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection. Can. J. Phys. 75: 733–745

    Article  Google Scholar 

  11. Yih K. A. (1999). MHD forced convection flow adjacent to a non-isothermal wedge. Int. Comm. Heat Mass Transf. 26: 819–827

    Article  Google Scholar 

  12. Watanabe T. and Pop I. (1994). Thermal boundary layers in magnetohydrodynamic flow over a flat plate in the presence of a transverse magnetic field. Acta Mech. 105: 233–238

    Article  MATH  Google Scholar 

  13. Seddeek M. A. (2003). Flow of a magneto-micropolar fluid past a continuously moving plate. Phys. Lett. A 306: 255–257

    Article  Google Scholar 

  14. El-Amin M. F. (2004). Combined effect of internal heat generation and magnetic field on free convection and mass transfer flow in a micropolar fluid with constant suction. J. Magn. Magn. Mater. 270: 130–135

    Article  Google Scholar 

  15. Eldabe N. T., Elshehawey E. F., Elbarbary E. M. E and Elgazery N. S. (2005). Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet with heat transfer. Appl. Math. Comput. 160: 437–450

    Article  MATH  MathSciNet  Google Scholar 

  16. Cortell R. (2006). Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys. Lett. A 357: 298–305

    Article  Google Scholar 

  17. Lykoudis P. S. (1962). Natural convection of an electrically conducting fluid in the presence of a magnetic field. Int. J. Heat Mass Transf. 5: 23–34

    Article  Google Scholar 

  18. Papailiou D. D. and Lykoudis P. S. (1968). Magneto-fluid-mechanic laminar natural convection – an experiment. Int. J. Heat Mass Transf. 11: 1385–1391

    Article  Google Scholar 

  19. Cobble M. H. (1977). Magnetofluiddynamic flow with a pressure gradient and fluid injection. J. Engng. Math. 11: 249–256

    Article  MATH  Google Scholar 

  20. Cobble M. H. (1980). Magnetohydrodynamic flow for a non-Newtonian power-law fluid having a pressure gradient and fluid injection. J. Engng. Math. 14: 47–55

    Article  MATH  Google Scholar 

  21. Helmy K. A. (1994). Solution of the boundary layer equation for a power law fluid in magneto-hydrodynamics. Acta Mech. 102: 25–37

    Article  MATH  MathSciNet  Google Scholar 

  22. Helmy K. A. (1995). MHD boundary layer equations for a power-law fluid with variable electric conductivity. Meccanica 30: 187–200

    Article  MATH  MathSciNet  Google Scholar 

  23. Anjali Devi S. P. and Thiyagarajan M. (2006). Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature. Heat Mass Transf. 42: 671–677

    Article  Google Scholar 

  24. Chiam T. C. (1995). Hydromagnetic flow over a surface stretching with a power-law velocity. Int. J. Engng. Sci. 33: 429–435

    Article  MATH  Google Scholar 

  25. Hoernel, J. D.: On the similarity solutions for a steady MHD equation. Commun. Nonlinear Sci. Numer. Simulat. (in press, 2007)

  26. Ahmadi G. (1976). Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Engng. Sci. 14: 639–646

    Article  Google Scholar 

  27. Kline K. A. (1977). A spin-vorticity relation for unidirectional plane flows of micropolar fluids. Int. J. Engng. Sci. 15: 131–134

    Article  Google Scholar 

  28. Yücel A. (1989). Mixed convection in micropolar fluid flow over a horizontal plate with surface mass transfer. Int. J. Engng. Sci. 27: 1593–1602

    Article  MATH  Google Scholar 

  29. Gorla R. S. R. (1988). Combined forced and free convection in micropolar boundary layer flow on a vertical flat plate. Int. J. Engng. Sci. 26: 385–391

    Article  MATH  Google Scholar 

  30. Ishak A., Nazar R. and Pop I. (2006). The Schneider problem for a micropolar fluid. Fluid Dyn. Res. 38: 489–502

    Article  MathSciNet  Google Scholar 

  31. Rees D. A. S. and Bassom A. P. (1996). The Blasius boundary-layer flow of a micropolar fluid. Int. J. Engng. Sci. 34: 113–124

    Article  MATH  MathSciNet  Google Scholar 

  32. Rossow, V.J.: On flow of electrically conducting fluid over a flat plate in the presence of a magnetic field. NACA TR 1358 (1958).

  33. Soundalgekar V. M., Takhar H. S. and Singh M. (1981). Velocity and temperature field in MHD Falkner-Skan flow. J. Phys. Soc. Japan 50: 3139–3143

    Article  Google Scholar 

  34. Cebeci T. and Bradshaw P. (1988). Physical and computational aspects of convective heat transfer. Springer, New York

    MATH  Google Scholar 

  35. Chamkha A. J., Mujtaba M., Quadri A. and Issa C. (2003). Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of heat source or sink. Heat Mass Transf. 39: 305–312

    Google Scholar 

  36. Lin H.-T and Lin L.-K. (1987). Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int. J. Heat Mass Transf. 30: 1111–1118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, A., Nazar, R. & Pop, I. MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature. Acta Mech 196, 75–86 (2008). https://doi.org/10.1007/s00707-007-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0499-8

Keywords

Navigation