Skip to main content
Log in

Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

An analysis is investigated for this study of the magnetohydrodynamics heat transfer flow of the micropolar fluid over a vertical porous moving plate in the existence of the radiation effect. The numerical elucidations of the governing equations achieved for various values of flow fields are taken out for the several parameters inflowing into the problem and solved by raising the Galerkin finite element technique. By taking the range of the magnetic field parameter 0 ≤ M ≤ 5, the range of viscosity ratio parameter is 0 ≤ β ≤ 5, and micro-gyration parameter is 0 ≤ n ≤ 5, whereas the value of Grashof number lies in 0 ≤ Gr ≤ 2 and −2 ≤ Gr ≤ 0. The numerical results and impact on the translation velocity and temperature are presented and discussed through graphs and listed in the tables. With an increase of β and Gr, the velocity increases, and the reverse effect is found with enhancing of M and n. With enhanced values of M, n, Pr, and R, the result in Cf rises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B 0magnetic:

induction (W·m−2)

(u′,v′):

velocity components along (x′,y′)-axis (m·s−1)

\(u_{\rm{p}}^\prime \) :

constant velocity in the longitudinal direction (m·s−1)

U 0 :

scale of free stream velocity (m·s−1)

j* :

micro inertia density (J·m−3)

β* :

fluid volumetric thermal expansion (K−1)

v r :

kinematic rotational viscosity (m2·s−1)

ω′:

angular velocity component vector normal to xy

n :

micro-gyration vector to the shear stress parameter

Λ :

vortex viscosity or gyro-viscosity coefficient (Pa·s)

Gr :

Grashof number

M :

magnetic field parameter (W·s−1)

Pr :

Prandtl number

θ :

temperature (K)

g :

acceleration due to gravity (m·s−2)

α :

effective fluid thermal diffusivity (m2·s−1)

β :

dimensionless viscosity ratio

γ :

spin gradient viscosity (kg·m·s−1)

v :

kinematic visocity (m2·s−1)

ρ :

fluid density (kg·m−3)

σ :

electrical conductivity of the fluid (s·m−1)

References

  • Abd El-Aziz, M. 2013. Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J Egypt Math Soc, 21: 385–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Abel, M. S., Sanjayanand, E., Nandeppanavar, M. M. 2008. Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations. Commun Nonlinear Sci Numer Simul, 13: 1808–1821.

    Article  MathSciNet  MATH  Google Scholar 

  • Abel, M. S., Siddheshwar, P. G., Nandeppanavar, M. M. 2007. Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source. Int J Heat Mass Transf, 50: 960–966.

    Article  MATH  Google Scholar 

  • Ali, R., Khan, M. R., Abidi, A., Rasheed, S., Galal, A. M. 2021. Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection. Case Stud Therm Eng, 27: 101329.

    Article  Google Scholar 

  • Bhargava, R., Kumar, L., Takhar, H. S. 2003. Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int J Eng Sci, 41: 2161–2178.

    Article  MATH  Google Scholar 

  • Bhattacharyya, K., Mukhopadhyay, S., Layek, G. C., Pop, I. 2012. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf, 55: 2945–2952.

    Article  Google Scholar 

  • Cheng, C. Y. 2008. Natural convection heat and mass transfer from a sphere in micropolar fluids with constant wall temperature and concentration. Int Commun Heat Mass Transf, 35: 750–755.

    Article  Google Scholar 

  • Dadheech, P. K., Agrawal, P., Mebarek-Oudina F., Abu-Hamdeh, N. H., Sharma, A. 2020. Comparative heat transfer analysis of MoS2/C2H6O2 and SiO2-MoS2/C2H6O2 nanofluids with natural convection and inclined magnetic field. J Nanofluids, 9: 161–167.

    Article  Google Scholar 

  • Damseh, R. A., Al-Odat, M. Q., Chamkha, A. J., Shannak, B. A. 2009. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface. Int J Therm Sci, 48: 1658–1663.

    Article  Google Scholar 

  • Dhif, K., Mebarek-Oudina, F., Chouf, S., Vaidya, H., Chamkha, A. J. 2021. Thermal analysis of the solar collector cum storage system using a hybrid-nanofluids. J Nanofluids, 10: 616–626.

    Article  Google Scholar 

  • Djebali, R., Mebarek-Oudina, F., Rajashekhar, C. 2021. Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Phys Scr, 96: 085206.

    Article  Google Scholar 

  • Eringen, A. 1966. Theory of micropolar fluids. Indiana Univ Math J, 16: 1–18.

    Article  MathSciNet  Google Scholar 

  • Goud, B. S. 2020a. Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. Int J Thermofluids, 7–8: 100044.

    Article  Google Scholar 

  • Goud, B. S. 2020b. Thermal radiation influences on MHD stagnation point stream over a stretching sheet with slip boundary conditions. Int J Thermofluid Sci Technol, 7: 070201.

    Article  Google Scholar 

  • Goud, B. S., Babu, B. S., Shekar, M. R., Srinivas, G. 2019. Mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature and thermal radiation. Int J Thermofluid Sci Technol, 6: 19060402.

    Article  Google Scholar 

  • Goud, B. S., Khan, Z. H., Hamid, M. 2021. Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter. Heat Transf, 50: 6129–6147.

    Article  Google Scholar 

  • Goud, B. S., Nandeppanavar, M. M. 2021. Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differ Equ Appl Math, 4: 100104.

    Article  Google Scholar 

  • Goud, B. S., Pramod Kumar, P., Malga, B. S. 2020a. Effect of Heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis. Partial Differ Equ Appl Math, 2: 100015.

    Article  Google Scholar 

  • Goud, B. S., Reddy, Y. D., Rao, V. S. 2020b. Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet. J Nav Archit Mar Eng, 17: 143–164.

    Article  Google Scholar 

  • Goud, B. S., Srilatha, P., Bindu, P., Hari Krishna, Y. 2020c. Radiation effect on MHD boundary layer flow due to an exponentially stretching sheet. Adv Math: Sci J, 9: 10755–10761.

    Google Scholar 

  • Goud, B. S., Yanala, D. R. 2021. Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate. Heat Transf, 50: 8553–8578.

    Article  Google Scholar 

  • Hussain, A., Rehman, A., Nadeem, S., Khan, M. R., Issakhov, A. 2021. A computational model for the radiated kinetic molecular postulate of fluid-originated nanomaterial liquid flow in the induced magnetic flux regime. Math Probl Eng, 2021: 6690366.

    Article  MathSciNet  Google Scholar 

  • Ibrahim, F. S., Elaiw, A. M., Bakr, A. A. 2008. Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids. Appl Math Inf Sci, 2: 143–162.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim, W., Shankar, B., Nandeppanavar, M. M. 2013. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf, 56: 1–9.

    Article  Google Scholar 

  • Khan, M. R. 2020. Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Phys Scr, 95: 105704.

    Article  Google Scholar 

  • Khan, M. R., Pan, K. J., Khan, A. U., Nadeem, S. 2020a. Dual solutions for mixed convection flow of SiO2—Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Phys A: Stat Mech Its Appl, 547: 123959.

    Article  MATH  Google Scholar 

  • Khan, M. R., Pan, K. J., Khan, A. U., Ullah, N. 2020b. Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. Int Commun Heat Mass Transf, 116: 104707.

    Article  Google Scholar 

  • Kim, Y. J. 2004. Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium. Transp Porous Media, 56: 17–37.

    Article  Google Scholar 

  • Kim, Y. J., Lee, J. C. 2003. Analytical studies on MHD oscillatory flow of a micropolar fluid over a vertical porous plate. Surf Coat Technol, 171: 187–193.

    Article  Google Scholar 

  • Kumar, M. A., Reddy, Y. D., Goud, B. S., Rao, V. S. 2021. Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium. Int J Thermofluids, 9: 100061.

    Article  Google Scholar 

  • Li, Y. X., Alshbool, M. H., Lv, Y. P., Khan, I., Khan, M. R., Issakhov, A. 2021. Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud Therm Eng, 26: 100975.

    Article  Google Scholar 

  • Lund, L. A., Omar, Z., Khan, I. 2019. Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: Dual solutions. Heliyon, 5: e02432.

    Article  Google Scholar 

  • Magyari, E., Chamkha, A. J. 2010. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: The full analytical solution. Int J Therm Sci, 49: 1821–1828.

    Article  Google Scholar 

  • Mahmoud, M. A. A. 2007. Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity. Phys A: Stat Mech Its Appl, 375: 401–410.

    Article  Google Scholar 

  • Marzougui, S., Mebarek-Oudina, F., Magherbi, M., Mchirgui, A. 2021. Entropy generation and heat transport of Cu—water nanoliquid in porous lid-driven cavity through magnetic field. Int J Numer Methods Heat Fluid Flow, https://doi.org/10.1108/HFF-04-2021-0288.

  • Mebarek-Oudina, F. 2019. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf-Asian Res, 48: 135–147.

    Article  Google Scholar 

  • Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R. W., H Abu-Hamdeh, N. 2021. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int Commun Heat Mass Transf, 125: 105279.

    Article  Google Scholar 

  • Mishra, S. R., Baag, S., Mohapatra, D. K. 2016. Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Eng Sci Technol Int J, 19: 1919–1928.

    Google Scholar 

  • Mohanty, B., Mishra, S. R., Pattanayak, H. B. 2015. Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet through porous media. Alex Eng J, 54: 223–232.

    Article  Google Scholar 

  • Nadeem, S., Riaz khan, M., Khan, A. U. 2019a. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: Existence of dual solutions. Phys Scr, 94: 075204.

    Article  Google Scholar 

  • Nadeem, S., Riaz Khan, M., Khan, A. U. 2019b. MHD stagnation point flow of viscous nanofluid over a curved surface. Phys Scr, 94: 115207.

    Article  Google Scholar 

  • Nandeppanavar, M. M., Abel, M. S., Siddalingappa, M. N. 2013. Heat transfer through a porous medium over a stretching sheet with effect of viscous dissipation. Chem Eng Commun, 200: 1513–1529.

    Article  Google Scholar 

  • Nandeppanavar, M. M., Srinivasulu, T., Bandari, S. 2019. MHD flow and heat transfer analysis of Newtonian and non-Newtonian nanofluids due to an inclined stretching surface. Multidiscip Modeling Mater Struct, 16: 134–155.

    Article  Google Scholar 

  • Naveed, M., Abbas, Z., Sajid, M. 2016. MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation. J Appl Fluid Mech, 9: 131–138.

    Article  Google Scholar 

  • Patel, H. R., Singh, R. 2019. Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, Joule heating and convective boundary condition. Int Commun Heat Mass Transf, 107: 68–92.

    Article  Google Scholar 

  • Qaiser, D., Zheng, Z. S., Riaz Khan, M. 2021. Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm Sci Eng Prog, 22: 100801.

    Article  Google Scholar 

  • Salahuddin, T., Khan, M., Al-Mubaddel, F. S., Alam, M. M., Ahmad, I. 2021. A study of heat and mass transfer micropolar fluid flow near the stagnation regions of an object. Case Stud Therm Eng, 26: 101064.

    Article  Google Scholar 

  • Sandeep, N., Sulochana, C. 2015. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink. Eng Sci Technol Int J, 18: 738–745.

    Google Scholar 

  • Shafiq, A., Mebarek-Oudina, F., Sindhu, T. N., Abidi, A. 2021. A study of dual stratification on stagnation point Walters’B nanofluid flow via radiative Riga plate: A statistical approach. Eur Phys J Plus, 136: 407.

    Article  Google Scholar 

  • Sharma, B. K., Singh, A. P., Yadav, K., Chaudhary, R. C. 2013. Effects of chemical reaction on magneto-micropolar fluid flow from a radiative surface with variable permeability. Int J Appl Mech Eng, 18: 833–851.

    Article  Google Scholar 

  • Shateyi, S., Marewo, G. T. 2020. On a new numerical approach of MHD mixed convection flow with heat and mass transfer of a micropolar fluid over an unsteady stretching sheet in the presence of viscous dissipation and thermal radiation. In: Applications of Heat, Mass and Fluid Boundary Layers. Fagbenle, R. O., Amoo, O. M., Aliu, S. et al. Eds. Amsterdam: Elsevier, 149–176.

    Chapter  Google Scholar 

  • Sheikh, N. A., Ali, F., Khan, I., Saqib, M., Khan, A. 2017. MHD flow of micropolar fluid over an oscillating vertical plate embedded in porous media with constant temperature and concentration. Math Probl Eng, 2017: 9402964.

    Article  MathSciNet  MATH  Google Scholar 

  • Singh, K., Kumar, M. 2016. Effects of thermal radiation on mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation/absorption. Int J Chem Eng, 2016: 8190234.

    Article  Google Scholar 

  • Srinivasulu, T., Goud, B. S. 2021. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud Therm Eng, 23: 100819.

    Article  Google Scholar 

  • Swain, K., Mebarek-Oudina, F., Abo-Dahab, S. M. 2022. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J Therm Anal Calorim, 147: 1561–1570.

    Article  Google Scholar 

  • Turkyilmazoglu, M. 2017. Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. Int J Heat Mass Transf, 106: 127–134.

    Article  Google Scholar 

  • Warke, A. S., Ramesh, K., Mebarek-Oudina, F., Abidi, A. 2021. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J Therm Anal Calorim, https://doi.org/10.1007/s10973-021-10976-z.

  • Zhao, T. H., Khan, M. R., Chu, Y. M., Issakhov, A., Ali, R., Khan, S. 2021. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid. Appl Math Mech, 42: 1205–1218.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Goud Bejawada.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejawada, S.G., Nandeppanavar, M.M. Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Exp. Comput. Multiph. Flow 5, 149–158 (2023). https://doi.org/10.1007/s42757-021-0131-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0131-5

Keywords

Navigation