Skip to main content
Log in

Deformation mechanism of strain localization in 2D numerical interface tests

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Heterogeneity arises in soil subjected to interface shearing, with the strain gradually localizing into a band area. How the strain localization accumulates and develops to form the structure is crucial in explaining some significant constitutive behaviors of the soil–structural interface during shearing, for example, stress hardening, softening, and shear-dilatancy. Using DEM simulation, interface shear tests with a periodic boundary condition are performed to investigate the strain localization process in densely and loosely packed granular soils. Based on the velocity field given by grains’ translational and rotational velocities, several kinematic quantities are analyzed during the loading history to demonstrate the evolution of strain localization. Results suggest that tiny concentrations in the shear deformation have already been observed in the very early stage of the shear test. The degree of the strain localization, quantified by a proposed new indicator, α, steadily ascends during the stress-hardening regime, dramatically jumps prior to the stress peak, and stabilizes at the stress steady state. Loose specimen does not develop a steady pattern at the large strain, as the deformation pattern transforms between localized and diffused failure modes. During the stress steady state of both specimens, remarkable correlations are observed between α and the shear stress, as well as between α and the volumetric strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bardet JP (1994) Special issue on microstructure and strain localization in geomaterials observations on the effects of particle rotations on the failure of idealized granular materials. Mech Mater 18:159–182. doi:10.1016/0167-6636(94)00006-9

    Article  Google Scholar 

  2. Bardet J-P, Proubet J (1991) Numerical investigation of the structure of persistent shear bands in granular media. Geotechnique 41:599–613

    Article  Google Scholar 

  3. Bardet J-P, Proubet J (1992) Shear-band analysis in idealized granular material. J Eng Mech 118:397–415

    Article  Google Scholar 

  4. Bigoni D (2000) Bifurcation and instability of non-associative elastoplastic solids. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Chambon R, Caillerie D (1999) Existence and uniqueness theorems for boundaryvalue problems involving incrementally non linear models. Int J Solids Struct 36:5089–5099

    Article  MATH  Google Scholar 

  6. Chareyre B, Villard P (2002) Discrete element modeling of curved geosynthetic anchorages with known macro-properties. In: Proceedings of the first international PFC symposium, pp 197–203

  7. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  8. Dejong JT, White DJ, Randolph MF (2006) Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils Found 46:15–28

    Article  Google Scholar 

  9. Desai CS, Drumm EC, Zaman MM (1985) Cyclic testing and modeling of interfaces. J Geotech Eng 111:793–815

    Article  Google Scholar 

  10. Desrues J, Lanier J, Stutz P (1985) Localization of the deformation in tests on sand sample. Eng Fract Mech 21:909–921. doi:10.1016/0013-7944(85)90097-9

    Article  Google Scholar 

  11. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46:529–546

    Article  Google Scholar 

  12. Dove JE, Jarrett JB (2002) Behavior of Dilative Sand Interfaces in a Geotribology Framework. J Geotech Geoenviron Eng 128:25–37. doi:10.1061/(ASCE)1090-0241(2002)128:1(25)

    Article  Google Scholar 

  13. Finno RJ, Harris WW, Mooney MA, Viggiani G (1997) Shear bands in plane strain compression of loose sand. Geotechnique 47:149–165

    Article  Google Scholar 

  14. Fu P, Dafalias YF (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Numer Anal Methods Geomech 35:1918–1948. doi:10.1002/nag.988

    Article  Google Scholar 

  15. Gao Z, Zhao J (2013) Strain localization and fabric evolution in sand. Int J Solids Struct 50:3634–3648

    Article  Google Scholar 

  16. Gu X, Huang M, Qian J (2014) Discrete element modeling of shear band in granular materials. Theor Appl Fract Mech 72:37–49. doi:10.1016/j.tafmec.2014.06.008

    Article  Google Scholar 

  17. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99:789–818

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo N, Zhao J (2016) 3D multiscale modeling of strain localization in granular media. Comput Geotech 80:360–372

    Article  Google Scholar 

  19. Guo N, Zhao J (2016) Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput Methods Appl Mech Eng 305:37–61

    Article  MathSciNet  Google Scholar 

  20. Guo N, Zhao J, Sun WC (2016) Multiscale analysis of shear failure of thick-walled hollow cylinder in dry sand. Géotechnique Lett 6:77–82. doi:10.1680/jgele.15.00149

    Article  Google Scholar 

  21. Huang W, Bauer E, Sloan SW (2003) Behaviour of interfacial layer along granular soil-structure interfaces. Struct Eng Mech 15:315–329

    Article  Google Scholar 

  22. Ikeda K, Yamakawa Y, Desrues J, Murota K (2008) Bifurcations to diversify geometrical patterns of shear bands on granular material. Phys Rev Lett 100:198001

    Article  Google Scholar 

  23. Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124:285–292

    Article  Google Scholar 

  24. Iwashita K, Oda M (1998) Shear band development in modified DEM: importance of couple stress. TASK Q Sci Bull Acad Comput Cent Gdansk 2:443–460

    Google Scholar 

  25. Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192–205. doi:10.1016/S0032-5910(99)00236-3

    Article  Google Scholar 

  26. Kishida H, Uesugi M (1987) Tests of the interface between sand and steel in the simple shear apparatus. Géotechnique 37:45–52. doi:10.1680/geot.1987.37.1.45

    Article  Google Scholar 

  27. Kuhn MR (1997) Deformation Measures for Granular Materials. ASCE, pp 91–104

  28. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31:407–429

    Article  Google Scholar 

  29. Lin J, Wu W, Borja RI (2015) Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials. Comput Methods Appl Mech Eng 289:24–43

    Article  MathSciNet  Google Scholar 

  30. Mohamed A, Gutierrez M (2010) Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granul Matter 12:527–541

    Article  MATH  Google Scholar 

  31. Nicot F, Darve F (2011) Diffuse and localized failure modes: two competing mechanisms. Int J Numer Anal Methods Geomech 35:586–601. doi:10.1002/nag.912

    Article  MATH  Google Scholar 

  32. Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48:465–481

    Article  Google Scholar 

  33. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242

    Article  Google Scholar 

  34. Petryk H (1993) Theory of bifurcation and instability in time-independent plasticity. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Stutz H, Mašín D, Wuttke F (2016) Enhancement of a hypoplastic model for granular soil–structure interface behaviour. Acta Geotech 11:1249–1261

    Article  Google Scholar 

  36. Sulem J, Vardoulakis IG (2004) Bifurcation analysis in geomechanics. CRC Press, Boca Raton

    Google Scholar 

  37. Tejchman J, Górski J (2008) Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity. Int J Numer Anal Methods Geomech 32:81–107

    Article  MATH  Google Scholar 

  38. Tejchman J, Wu W (1996) Numerical simulation of shear band formation with a hypoplastic constitutive model. Comput Geotech 18:71–84

    Article  Google Scholar 

  39. Tordesillas A (2007) Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos Mag 87:4987–5016

    Article  Google Scholar 

  40. Uesugi M, Kishida H (1986) Frictional resistance at yield between dry sand and mild steel. Soils Found 26:139–149. doi:10.3208/sandf1972.26.4_139

    Article  Google Scholar 

  41. Uesugi M, Kishida H (1986) Influential factors of friction between steel and dry sands. Soils Found 26:33–46. doi:10.3208/sandf1972.26.2_33

    Article  Google Scholar 

  42. Uesugi M, Kishida H, Tsubakihara Y (1988) Behavior of sand particles in sand-steel friction. Soils Found 28:107–118. doi:10.3208/sandf1972.28.107

    Article  Google Scholar 

  43. Vardoulakis I (1980) Shear band inclination and shear modulus of sand in biaxial tests. Int J Numer Anal Methods Geomech 4:103–119

    Article  MATH  Google Scholar 

  44. Vardoulakis I, Graf B (1985) Calibration of constitutive models for granular materials using data from biaxial experiments. Géotechnique 35:299–317

    Article  Google Scholar 

  45. Vardoulakis I, Goldscheider M, Gudehus G (1978) Formation of shear bands in sand bodies as a bifurcation problem. Int J Numer Anal Methods Geomech 2:99–128

    Article  Google Scholar 

  46. Wang J, Gutierrez M (2010) Discrete element simulations of direct shear specimen scale effects. Géotechnique 60:395–409

    Article  Google Scholar 

  47. Wang J, Jiang M (2011) Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granul Matter 13:631–641. doi:10.1007/s10035-011-0275-2

    Article  Google Scholar 

  48. Wang Y-H, Leung S-C (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45:29–44

    Article  Google Scholar 

  49. Wang J, Dove JE, Gutierrez MS (2006) Determining particulate–solid interphase strength using shear-induced anisotropy. Granul Matter 9:231–240. doi:10.1007/s10035-006-0031-1

    Article  MATH  Google Scholar 

  50. Wang J, Dove JE, Gutierrez MS (2007) Anisotropy-based failure criterion for interphase systems. J Geotech Geoenviron Eng 133:599–608

    Article  Google Scholar 

  51. Wang J, Dove JE, Gutierrez MS (2007) Determining particulate–solid interphase strength using shear-induced anisotropy. Granul Matter 9:231–240

    Article  MATH  Google Scholar 

  52. Wang J, Gutierrez MS, Dove JE (2007) Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int J Numer Anal Methods Geomech 31:1349–1366. doi:10.1002/nag.589

    Article  MATH  Google Scholar 

  53. Westgate ZJ, DeJong JT (2006) Evolution of sand-structure interface response during monotonic shear using particle image velocimetry. In: Proceedings Geocongress 2006

  54. Zhang GA, Zhang J-M (2006) Monotonic and cyclic tests of interface between structure and gravelly soil. Soils Found 46:505–518

    Article  Google Scholar 

  55. Zhang G, Zhang J (2009) State of the art: mechanical behavior of soil–structure interface. Prog Nat Sci 19:1187–1196. doi:10.1016/j.pnsc.2008.09.012

    Article  Google Scholar 

  56. Zhao J, Guo N (2015) The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 10:184

    Google Scholar 

  57. Zhu H, Nguyen HN, Nicot F, Darve F (2016) On a common critical state in localized and diffuse failure modes. J Mech Phys Solids 95:112–131

    Article  Google Scholar 

  58. Zhu H, Veylon G, Nicot F, Darve F (2016) On the mechanics of meso-scale structures in two-dimensional granular materials. Eur J Environ Civ Eng 20:1–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Macau Science and Technology Development Fund (FDCT) 125/2014/A3, the National Natural Science Foundation of China (Grant No. 51508585), the University of Macau Research Fund MYRG2015-00112-FST and the Region Pays de la Loire of France (Project RI-ADAPTCLIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Huan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhou, WH. & Yin, ZY. Deformation mechanism of strain localization in 2D numerical interface tests. Acta Geotech. 13, 557–573 (2018). https://doi.org/10.1007/s11440-017-0561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0561-1

Keywords

Navigation