Skip to main content

Advertisement

Log in

Solubility of calcium molybdate in aqueous solutions at 573 K and thermodynamics of monomer hydrolysis of Mo(VI) at elevated temperatures

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This study presents new experimental results on solubility of synthetic crystalline calcium molybdate, CaMoO4(cr), at 573 K and pressure ~ 10 MPa in aqueous solutions of HCl (10−4–0.02 m), HClO4 (10−4–0.03 m), NaCl (0–3.82 m) and NaClO4 (0.10–1.61 m). In addition, the thermodynamic analysis of literature and own data allowed recommendations of the equilibrium constants, \(\log_{10} {{K}}^{\text {o}}\), of the reactions H+ + MoO4 2− = HMoO4 , MoO3(cr) + OH = HMoO4 , MoO3(cr) + H2O(l) = H2MoO4(aq), and 2H+ + MoO4 2− = H2MoO4(aq) at temperatures 273–623 K and the saturated water vapor pressure, P s. Knowledge of the thermodynamic properties of the molybdate ion, MoO4 2− (this work), Ca2+, and of calcium molybdate CaMoO4(cr) allowed calculating the values of the solubility product of this phase at temperatures 273–623 K and P s. The thermodynamic modeling of solubility of CaMoO4(cr) at 573 K and P s in studied aqueous solutions (HCl, HClO4, NaCl, and NaClO4) showed that all our experimental data can be reproduced using the same set of species, which includes only the molybdate ion, MoO4 2−, and products of its hydrolysis, HMoO4 and H2MoO4(aq). Although the formation of ion pairs involving Na+ and the molybdate and hydrogenmolybdate ions at high temperatures appears likely due to the fall of the dielectric constant of water, the current data do not support the formation of such forms of Mo(VI), at least they are never the dominating species at conditions of presented experiments. The increase of temperature leads to the expansion of the predominance field of the hydrogenmolybdate ion HMoO4 and of H2MoO4(aq) and the decrease of the relative share of MoO4 2−.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. http://www.imoa.info/molybdenum/molybdenum-processing.php. Accessed 30 Mar 2017

  2. Kudrin AV (1985) Geochem Int 22:126

    Google Scholar 

  3. Ulrich T, Mavrogenes J (2008) Geochim Cosmochim Acta 72:2316

    Article  CAS  Google Scholar 

  4. Gamsjäger H, Morishita M (2015) Pure Appl Chem 87:461

    Article  Google Scholar 

  5. Gamsjäger H (2013) Pure Appl Chem 85:2059

    Article  Google Scholar 

  6. Cruywagen JJ (2000) Adv Inorg Chem 49:127

    Article  CAS  Google Scholar 

  7. Dement’ev I, Kozin A, Kondrat’ev Y, Korol’kov D, Proyavkin A (2007) Russ J Gen Chem 77:822

    Article  Google Scholar 

  8. Plyasunov AV, Grenthe I (1994) Geochim Cosmochim Acta 58:3561

    Article  CAS  Google Scholar 

  9. Wesolowski D, Drummond SE, Mesmer RE, Ohmoto H (1984) Inorg Chem 23:1120

    Article  CAS  Google Scholar 

  10. Yan H, Mayanovic RA, Anderson AJ, Meredith PR (2011) Nucl Instr Meth Phys Res A 649:207

    Article  CAS  Google Scholar 

  11. Borg S, Liu W, Etschmann B, Tian Y, Brugger J (2012) Geochim Cosmochim Acta 92:292

    Article  CAS  Google Scholar 

  12. Zhidikova AP, Malinin SD (1972) Geochem Int 9:21

    Google Scholar 

  13. Grambow B, Müller R, Rother A (1992) Radiochim Acta 58/59:71

    Article  Google Scholar 

  14. Minubayeva Z, Seward TM (2010) Geochim Cosmochim Acta 74:4365

    Article  CAS  Google Scholar 

  15. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2017) Fluid Phase Equil 440:64

    Article  CAS  Google Scholar 

  16. Gao X (1989) Solubility of molybdenite and the transport of molybdenum in hydrothermal solutions. Ph. D. thesis, Iowa State University

  17. Kudrin AV (1989) Geochem Int 26:87

    Google Scholar 

  18. Dadze TP, Kashirtseva GA, Novikov MP, Plyasunov AV (2017) J Chem Eng Data 62:3848

    Article  CAS  Google Scholar 

  19. Sasaki Y, Lindqvist I, Sillén LG (1959) J Inorg Nucl Chem 9:93

    Article  CAS  Google Scholar 

  20. Sasaki Y, Sillén LG (1964) Acta Chem Scand 18:1014

    Article  CAS  Google Scholar 

  21. Aveston J, Anacker EW, Johnson JS (1964) Inorg Chem 3:735

    Article  CAS  Google Scholar 

  22. Cruywagen JJ, Rohwer EFCH (1975) Inorg Chem 14:3136

    Article  CAS  Google Scholar 

  23. Cruywagen JJ (1980) Inorg Chem 19:552

    Article  CAS  Google Scholar 

  24. Kato T, Murayama T (1983) Bull Chem Soc Jpn 56:2129

    Article  CAS  Google Scholar 

  25. Pettersson L, Andersson I, Öhman L-O (1985) Acta Chem Scand A39:53

    Article  CAS  Google Scholar 

  26. Tytko KH, Baethe G, Cruywagen JJ (1985) Inorg Chem 24:3132

    Article  CAS  Google Scholar 

  27. Cruywagen JJ, Heyns JBB (1987) Inorg Chem 26:2569

    Article  CAS  Google Scholar 

  28. Yagasaki A, Sasaki Y (1987) Bull Chem Soc Jpn 60:763

    Article  CAS  Google Scholar 

  29. Yagasaki A, Andersson I, Pettersson L (1987) Inorg Chem 26:3926

    Article  CAS  Google Scholar 

  30. Cruywagen JJ, Heyns JBB (1989) J Chem Educ 66:861

    Article  CAS  Google Scholar 

  31. Cruywagen JJ, Draaijer AG, Heyns JBB, Rohwer EA (2002) Inorg Chim Acta 331:322

    Article  CAS  Google Scholar 

  32. Grenthe I, Plyasunov AV, Spahiu K (1997) Estimations of medium effects on thermodynamic data. In: Grenthe I, Puigdomenech I (eds) Modelling in aqueous chemistry. NEA OECD, Paris, p 325

    Google Scholar 

  33. Grenthe I, Puigdomenech I (1997) Symbols, standards, and conventions. In: Grenthe I, Puigdomenech I (eds) Modelling in aqueous chemistry. NEA OECD, Paris, p 35

    Google Scholar 

  34. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  35. Wagner W, Pruß A (2002) J Phys Chem Ref Data 31:387

    Article  CAS  Google Scholar 

  36. Hepler LG, Hovey JK (1996) Can J Chem 74:639

    Article  CAS  Google Scholar 

  37. Glushko VP, Gurvich LV, Bergman GA, Veits IV, Medvedev VA, Khachkuruzov GA, Yungman VS (1982) Thermodynamic properties of individual substances, vol 4. Nauka, Moscow (in Russian)

    Google Scholar 

  38. Zhidikova AP, Khodakovsky IL (1984) Thermodynamic properties of ferberite, hubnerite, scheelite and powellite. In: Tauson LV (ed) Physico-chemical model of petrogenesis and ore formation. Nauka, Novosibirsk, p 145

    Google Scholar 

  39. Weller WW, King EG (1962) US Dept Interior, Bureau of Mines, Rept Invest No. 6147

  40. Musikhin AE, Naumov VN, Bespyatov MA, Shlegel VN (2016) J Alloys Comp 655:165

    Article  CAS  Google Scholar 

  41. Tanger JC IV, Helgeson HC (1988) Am J Sci 288:19

    Article  CAS  Google Scholar 

  42. Shock EL, Oelkers EH, Johnson JW, Sverjensky DA, Helgeson HC (1992) J Chem Soc Faraday Trans 88:803

    Article  CAS  Google Scholar 

  43. Cruywagen JJ, Draaijer AG (1992) Polyhedron 11:141

    Article  CAS  Google Scholar 

  44. Plyasunov AV, Grenthe I (1996) Acta Chem Scand 50:571

    Article  CAS  Google Scholar 

  45. Zhidikova AP, Kuskov OL (1971) Geokhimiya 9:1149 (in Russian)

    Google Scholar 

  46. Kiseleva IA, Ogorodova LP, Topor ND (1980) Geokhimiya 11:1752 (in Russian)

    Google Scholar 

  47. Zhidikova AP, Khodakovsky IL (1971) Geokhimiya 4:427 (in Russian)

    Google Scholar 

  48. Shvarov YuV (1999) Geochem Int 37:571

    Google Scholar 

  49. Shvarov YuV (2008) Geochem Int 46:834

    Article  Google Scholar 

  50. Arcis H, Zimmerman GH, Tremaine PR (2014) Phys Chem Chem Phys 16:17688

    Article  CAS  Google Scholar 

  51. Ratcliffe CI, Irish DE (1984) Can J Chem 62:1134

    Article  CAS  Google Scholar 

  52. Zimmerman GH, Arcis H, Tremaine PR (2012) J Chem Eng Data 57:2415

    Article  CAS  Google Scholar 

  53. Borina AF (1963) Geokhimiya 7:658 (in Russian)

    Google Scholar 

  54. Sverjensky DA, Shock EL, Helgeson HC (1997) Geochim Cosmochim Acta 61:1359

    Article  CAS  Google Scholar 

  55. Djamali E, Chapman WG, Cox KR (2016) J Chem Eng Data 61:3585

    Article  CAS  Google Scholar 

  56. Madekufamba M, Tremaine PR (2011) J Chem Eng Data 56:889

    Article  CAS  Google Scholar 

  57. Hnedkovsky L, Wood RH, Balashov VN (2005) J Phys Chem B 109:9034

    Article  CAS  Google Scholar 

  58. Ivanova GF, Levkina NI, Nesterova LA, Zhidikova AP, Khodakovskii IL (1975) Geochem Int 12:163

    Google Scholar 

  59. Archer DG (1992) J Phys Chem Ref Data 21:793

    Article  CAS  Google Scholar 

  60. Abdulagatov IM, Azizov ND (2003/2004) High Temp High Press 35/36:477

  61. Marchenko Z (1971) Photometric determination of elements. Mir, Moscow (in Russian)

    Google Scholar 

  62. Lindsay WT Jr (1980) Official Proc. 41st Ann. Meeting Int. Water Conf, p 284

  63. Jackson KJ, Helgeson HC (1985) Geochim Cosmochim Acta 49:1

    Article  CAS  Google Scholar 

  64. Fernández-Prini RJ, Corti HR, Japas ML (1992) High-temperature aqueous solutions: thermodynamic propertes. CRC, Boca Raton

    Google Scholar 

  65. Puigdomenech I, Rard JA, Plyasunov AV, Grenthe I (1997) Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe I, Puigdomenech I (eds) Modelling in aquatic chemistry. OECD, Paris, p 427

    Google Scholar 

  66. Ciavatta L (1980) Ann Chim (Rome) 70:551

    CAS  Google Scholar 

  67. Plyasunov AV, Popova ES (2013) J Solut Chem 42:1320

    Article  CAS  Google Scholar 

  68. Pitzer KS (1973) J Phys Chem 77:268

    Article  CAS  Google Scholar 

  69. Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca Raton, p 75

    Google Scholar 

  70. Lietzke MH, Stoughton RW, Young TF (1961) J Phys Chem 65:2247

    Article  CAS  Google Scholar 

  71. Marshall WL, Jones EV (1966) J Phys Chem 70:4028

    Article  CAS  Google Scholar 

  72. Quist AS, Marshall WL (1966) J Phys Chem 70:3714

    Article  CAS  Google Scholar 

  73. Quist AS, Marshall WL, Jolley HR (1965) J Phys Chem 69:2726

    Article  CAS  Google Scholar 

  74. Ryzhenko BN (1964) Geokhimiya 1:23 (in Russian)

    Google Scholar 

  75. Oscarson JL, Izatt RM, Brown PR, Pawlak Z, Gillespie SE, Christensen JJ (1988) J Solut Chem 17:841

    Article  CAS  Google Scholar 

  76. Matsushima Y, Okuwaki A (1988) Bull Chem Soc Jpn 61:3344

    Article  CAS  Google Scholar 

  77. Dickson AG, Wesolowski DJ, Palmer DA, Mesmer RE (1990) J Phys Chem 94:7978

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (Grant# 15-05-2255). The authors thank A.N. Nekrasov and T. N. Dokina (IEM RAS) for SEM and XRD measurements, and Dr. Karandashev V. K. (IPTM RAS) for ICP-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Plyasunov.

Appendix: Temperature dependence of the second ionization constant of H2SO4 at the saturated water vapor pressure

Appendix: Temperature dependence of the second ionization constant of H2SO4 at the saturated water vapor pressure

Thermodynamic properties of ions SO4 2− and HSO4 at 298.15 K, 0.1 MPa are known with high precision, see Table 10. From there, for reaction (A1)

Table 10 Thermodynamic properties of reactants/products of reaction (A1)
$${\text{H}}^{ + } + {\text{SO}}_{ 4}^{ 2- } = {\text{HSO}}_{ 4}^{ - }$$
(A1)

one calculates at 298.15 K \(\Delta_{\text{r}} H_{\text{m}}^{\text{o}}\) = 22.44 kJ mol−1, \(\Delta_{\text{r}} S_{\text{m}}^{\text{o}}\) = 113.2 J K−1 mol−1, \(\Delta_{\text{r}} C_{{p , {\text{m}}}}^{\text{o}}\) = 258 J K−1 mol−1. Literature values of equilibrium constants of reaction (A1) at the saturated water pressure (P s), given in Table 11, have been used to find parameters of Eq. (A2):

Table 11 Studies of the second ionization constant of H2SO4, which results have been used to derive the parameters of Eq. (A2) at the saturated water pressure
$$\log_{10} K^{\text{o}} = 1. 5 7 90 \times 10^{ 4} /T - 6 9 8. 6 3 + 1 2 8. 7 9 {\text{ln}}T - 0. 3 3 6 6 7T + 1. 60 20 \times 10^{ - 4} T^{ 2}$$
(A2)

The relation (A2) was constrained in such a way to exactly reproduce the values of the thermodynamic functions of reaction (A1) at 298.15 K.

Values of equilibrium constants of reaction (A1) at temperatures above 373 K have been determined in a number of studies, see Table 11. Studies of \(K^{\text{o}}\) based on measurements of solubility of sulfates [70, 71] have not been accepted, because they provide lower values of the second ionization constant of H2SO4 at highest temperatures, presumably due to difficulties of interpretation of experimental results. Values of \(K^{\text{o}}\) at temperatures 473 and 573 K reported in [72] are significantly (up to 1.7 log10 units) larger than the values reported by the same research group in an earlier study [73], and the earlier results [73] were rejected. In cases, where measurements have been performed at pressures exceeding the saturated water vapor pressure, values of \(\log_{10} K^{\text{o}}\) have been extrapolated to P s using the dependence of \(\log_{10} K^{\text{o}}\) on the water density recommended in [57], see their Eqs. (27) and (28). When necessary, values of equilibrium constants have been recalculated to the molality concentration scale.

Experimental and calculated values of \(\log_{10} K^{\text{o}}\) are shown in Fig. 19. Smoothed values of \(\log_{10} K^{\text{o}}\) and thermodynamic functions of reaction (A1) at temperatures 273.15–623.15 K are given in Table 12.

Fig. 19
figure 19

Experimental (symbols) and calculated (the curve) values of \(\log_{10} K^{\text{o}}\) of reaction (A1)

Table 12 Calculated thermodynamic quantities for reaction (A1) along the liquid–vapor saturation curve of water

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadze, T.P., Kashirtseva, G.A., Novikov, M.P. et al. Solubility of calcium molybdate in aqueous solutions at 573 K and thermodynamics of monomer hydrolysis of Mo(VI) at elevated temperatures. Monatsh Chem 149, 261–282 (2018). https://doi.org/10.1007/s00706-017-2077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2077-7

Keywords

Navigation