Skip to main content

Advertisement

Log in

Solubility of Zr(OH)4(am) and the Formation of Zr(IV) Carbonate Complexes in Carbonate Solutions Containing 0.1–5.0 mol·dm−3 NaNO3

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of amorphous zirconium hydroxide [Zr(OH)4(am)] was investigated in carbonate solutions containing various concentrations of sodium nitrate. The observed dependences of Zr(IV) solubility on the hydrogen ion concentration (pHc) and carbonate concentration suggested the formation of \( {\text{Zr}}({{\text{CO}}}_{3} )_{4}^{4 - } \), \( {\text{Zr}}({{\text{CO}}}_{3} )_{5}^{6 - } \), and \( {\text{Zr(OH)}}_{ 2} ( {{\text{CO}}}_{3} )_{2}^{2 - } \) as the dominant species in the neutral to weakly alkaline pH regions. The solubility of Zr(IV) at certain pHc values and carbonate concentrations was observed to increase slightly with increasing ionic strength, while the solid phase was determined to be Zr(OH)4(am) at all ionic strengths by using thermal analysis. By applying the specific ion interaction theory, the solubility data at different pHcs, carbonate concentrations, and ionic strengths were analyzed to determine the formation constants of the Zr(IV) carbonate complexes and their ion interaction coefficients. The obtained values explain well the solubility data, which are discussed in comparison with those of analogous tetravalent actinide carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D., Rand, M.: Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. In: Mompean, F.J., Illemassène, M., Domenech-Orti, C., Ben Said, K. (eds.) Chemical Thermodynamics, vol. 5. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Brown, P., Curti, E., Grambow, B., Ekberg, C.: Chemical thermodynamics of zirconium. In: Mompean, F.J., Perrone, J., Ekberg, C. (eds.) Chemical Thermodynamics, vol. 8. Elsevier, Amsterdam (2005)

    Google Scholar 

  3. Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical thermodynamics of thorium. In: Mompean, F.J., Perrone, J., Illemaassène, M. (eds.) Chemical Thermodynamics, vol. 11. Elsevier, Amsterdam (2009)

    Google Scholar 

  4. Fanghänel, Th, Neck, V.: Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl. Chem. 74, 1895–1907 (2002)

    Article  Google Scholar 

  5. Altmaier, M., Gaona, X., Fanghänel, T.: Recent advances in aqueous actinide chemistry and thermodynamics. Chem. Rev. 113, 901–943 (2013)

    Article  CAS  Google Scholar 

  6. Knope, K.E., Soderholm, L.: Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem. Rev. 113, 944–994 (2013)

    Article  CAS  Google Scholar 

  7. Dervin, J.: Sur la structure et la stabilité des carbonates complexes de Thorium(IV), Cerium(IV), Zirconium(IV), Hafnium(IV). Ph.D. Thesis, University of Reims Champagne-Ardenne (1972)

  8. Malinko, L.A., Chumakova, L.S., Arsenin, K.I., Karlysheva, K.F., Sheka, I.A.: The interaction of zirconium sulphate with sodium carbonate in solution. Russ. J. Inorg. Chem. 25, 1184–1188 (1980)

    Google Scholar 

  9. Karlysheva, K.F., Chumakova, L.S., Malinko, L.A., Sheka, I.A.: Reaction of zirconium and hafnium oxide chlorides with sodium carbonate in solution. Russ. J. Inorg. Chem. 27, 1582–1585 (1982)

    Google Scholar 

  10. João, A., Bigot, S., Fromage, F.: Etude des carbonates complexes des éléments IVB II. Détermination des constants d’équilibre de formation des tétracarbonatozirconates(IV) et -hafnates(IV). Bull. Soc. Chim. Fr. 6, 943–947 (1987)

    Google Scholar 

  11. Veyland, A., Rimbault, J., Dupont, L., Pierrard, J.C., Aplincourt, M., Bourg, S., Nuzillard, J.M., Angiboust, J.F.: Coordination mode and kinetic behavior of the tetracarbonatozirconate ion. Helv. Chim. Acta 82, 2003–2014 (1999)

    Article  CAS  Google Scholar 

  12. Veyland, A., Dupont, L., Rimbault, J., Pierrard, J.C., Aplincourt, M.: Aqueous chemistry of zirconium(IV) in carbonate media. Helv. Chim. Acta 83, 414–427 (2000)

    Article  CAS  Google Scholar 

  13. Veyland, A., Dupont, L., Pierrard, J.C., Rimbault, J., Aplincourt, M., Devoldere, L.: Investigation of the tetracarbonatozirconate ion by electrospray mass spectrometry in aqueous media. Inorg. Chem. Commun. 3, 600–607 (2000)

    Article  CAS  Google Scholar 

  14. Pouchon, M.A., Curti, E., Degueldre, C., Tobler, L.: The influence of carbonate complexes on the solubility of zirconia: new experimental data. Prog. Nucl. Energy 38, 443–446 (2001)

    Article  CAS  Google Scholar 

  15. Japan Atomic Energy Agency: 2nd Progress Report on Research and Development for TRU Waste Disposal in Japan, JAEA-Review TRU-TR2-2007-01, JAEA, Tokai, Japan (2007)

  16. Rudisell, T.S.: Decontamination of zircaloy cladding hulls from spent nuclear fuel. J. Nucl. Fuels 385, 193–195 (2009)

    Google Scholar 

  17. Reynolds, J.G., Huber, H.J., Cooke, G.A., Pestovich, J.A.: Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford. J. Hazard. Mater. 278, 203–210 (2014)

    Article  CAS  Google Scholar 

  18. Sasaki, T., Kobayashi, T., Takagi, I., Moriyama, H.: Solubility measurement of zirconium(IV) hydrous oxide. Radiochim. Acta 94, 489–494 (2006)

    Article  CAS  Google Scholar 

  19. Altmaier, M., Neck, V., Fanghänel, T.: Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca–M(IV)–OH complexes. Radiochim. Acta 96, 541–550 (2008)

    Article  Google Scholar 

  20. Kobayashi, T., Sasaki, T., Takagi, I., Moriyama, H.: Zirconium solubility in ternary aqueous system of Zr(IV)–OH–carboxylates. J. Nucl. Sci. Technol. 46, 142–148 (2009)

    Article  CAS  Google Scholar 

  21. Altmaier, M., Neck, V., Müller, R., Fanghänel, T.: Solubility of ThO2·xH2O(am) in carbonate solution and the formation of ternary Th(IV) hydroxide–carbonate complexes. Radiochim. Acta 93, 83–92 (2005)

    Article  CAS  Google Scholar 

  22. Altmaier, M., Neck, V., Denecke, M.A., Yin, R., Fanghänel, T.: Solubility of ThO2·xH2O(am) and the formation of ternary Th(IV) hydroxide–carbonate complexes in NaHCO3–Na2CO3 solutions containing 0–4 M NaCl. Radiochim. Acta 94, 495–500 (2006)

    Article  CAS  Google Scholar 

  23. Rai, D., Felmy, A.R., Hess, N.J., Moore, D.A., Yui, M.: A thermodynamic model for the solubility of UO2(am) in the aqueous K+–Na+\( {\text{HCO}}_{ 3}^{-}\)\( {{\text{CO}}}_{3}^{2 - } \)–OH–H2O system. Radiochim. Acta 82, 17–25 (1998)

    Article  CAS  Google Scholar 

  24. Rai, D., Hess, N.J., Felmy, A.R., Moore, D.A.: A thermodynamic model for the solubility of NpO2(am) in the aqueous K+\( {\text{HCO}}_{ 3}^{-}\)\( {{\text{CO}}}_{3}^{2 - } \)–OH–H2O system. Radiochim. Acta 84, 159–169 (1999)

    Article  CAS  Google Scholar 

  25. Rai, D., Hess, N.J., Felmy, A.R., Moore, D.A., Yui, M., Vitorge, P.: A thermodynamic model for the solubility of PuO2(am) in the aqueous K+\( {\text{HCO}}_{ 3}^{-}\)\( {{\text{CO}}}_{3}^{2 - } \)–OH–H2O system. Radiochim. Acta 86, 89–99 (1999)

    Article  CAS  Google Scholar 

  26. Östhols, E., Bruno, J., Grenthe, I.: On the influence of carbonate on mineral dissolution: III. The solubility of microcrystalline ThO2 in CO2–H2O media. Geochim. Cosmochim. Acta 58, 613–623 (1994)

    Article  Google Scholar 

  27. Sasaki, T., Kobayashi, T., Takagi, I., Moriyama, H.: Hydrolysis constant and coordination geometry of zirconium(IV). J. Nucl. Sci. Technol. 45, 735–739 (2008)

    Article  CAS  Google Scholar 

  28. Capdevila, H., Vitorge, P., Giffaut, E., Delmau, L.: Spectrophotometric study of the dissociation of the Pu(IV) carbonate limiting complex. Radiochim. Acta 74, 93–98 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by a grant from the Ministry of Economy, Trade and Industry (METI). The authors would like to acknowledge and thank Drs. Xavier Gaona and Marcus Altmaier of the Karlsruhe Institute of Technology for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishi Kobayashi.

Appendices

Appendix 1

In the present study, the sample solutions were prepared using an undersaturation method. The initial solid phase of Zr(OH)4(am) was placed into the sample solutions at specific pH, [C]tot, and ionic strength. After aging of the sample solutions, the solid phases kept at pHc 8, [C]tot = 0.04 mol·dm−3, and I = (0.1, 0.5, 2.0 and 5.0) mol·dm−3 were investigated by thermal analysis. The TGA and DTA curves are shown in Fig. 7, together with those of Zr(OH)4(am), NaNO3, and NaHCO3. In the curves for NaNO3, an endothermic peak around 310 °C represents the melting point, while the weight loss after 650 °C indicates thermal decomposition. For NaHCO3, an endothermic peak and weight loss at 150 °C shows a release of CO2 from the sample. For Zr(OH)4(am), an endothermic peak and weight loss at around 100 °C represent the dehydration of Zr(OH)4(am) to ZrO2(s). The solid phases that were in contact with the sample solutions showed endothermic peaks and weight losses corresponding only to the processes of dehydration of Zr(OH)4(am) and melting and decomposition of residual NaNO3. No indications of a Zr(IV) carbonate solid compound were observed, so it was assumed that the initial Zr(OH)4(am) solid phase was not transformed under the experimental conditions employed.

Fig. 7
figure 7

TGA (upper) and DTA (lower) curves of Zr(IV) solid phases with 0.04 mol·dm−3 [C]tot at pHc 8 in NaNO3 solutions of increasing concentration

See Fig. 7.

Appendix 2: Experimental Solubility Data

See Tables 4, 5, 6, and 7.

Table 4 Solubility of Zr(IV) in the presence of 0.5 mol·dm−3 NaNO3 at [C]tot = (0.015, 0.04, and 0.1) mol·dm−3 after ultrafiltration through 10 kDa membranes
Table 5 Solubility of Zr(IV) in the presence of 0.1–5.0 mol·dm−3 NaNO3 at [C]tot = 0.04 mol·dm−3 after ultrafiltration through 10 kDa membranes
Table 6 Solubility of Zr(IV) in the presence of 0.1–5.0 mol·dm−3 NaNO3 at [C]tot = 0.001–0.015 mol·dm−3 after ultrafiltration through 10 kDa membranes
Table 7 Solubility of Zr(IV) in the presence of 0.1–5.0 mol·dm−3 NaCl at [C]tot = 0.04 mol·dm−3 after ultrafiltration through 10 kDa membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Sasaki, T. Solubility of Zr(OH)4(am) and the Formation of Zr(IV) Carbonate Complexes in Carbonate Solutions Containing 0.1–5.0 mol·dm−3 NaNO3 . J Solution Chem 46, 1741–1759 (2017). https://doi.org/10.1007/s10953-017-0599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0599-6

Keywords

Navigation