Skip to main content
Log in

Mechanistic study of electrochemical oxidation of 2,5-diethoxy-4-morpholinoaniline in aqueous solutions: hydrolysis, trimerization, and hydroxylation processes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of 2,5-diethoxy-4-morpholinoaniline has been studied in various pHs using cyclic voltammetry and controlled potential coulometry. The results indicate that the electrochemically generated p-quinonediimine participates in different types of reactions (hydrolysis, hydroxylation, and trimerization). Instability of the produced p-quinonediimine depends on its structure, higher nucleophilicity of 2,5-diethoxy-4-morpholinoaniline, and pH of solution. In lower pH range, rate of hydrolysis is faster than hydroxylation and dimerization. In intermediate pHs rate of the dimerization is faster than hydrolysis and hydroxylation, and in the strongly alkaline solution, rate of the hydroxylation is faster than hydrolysis and dimerization. The effect of the charge of reaction site (C1) and N1=C1 bond order (Wiberg bond indices) on the hydrolysis rate were studied. Calculations were performed using density functional theory B3LYP level of theory and 6−311+G(p,d) basis set.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Costentin C (2008) Chem Rev 108:2145

    Article  CAS  Google Scholar 

  2. Houmam A (2008) Chem Rev 108:2180

    Article  CAS  Google Scholar 

  3. Sun JJ, Wu Y, Song JF (2014) Electrochim Acta 115:386

    Article  CAS  Google Scholar 

  4. Duan X, Tian L, Liu W, Chang L (2013) Electrochim Acta 94:192

    Article  CAS  Google Scholar 

  5. Rafiee M, Nematollahi D (2007) Electroanalysis 19:1382

    Article  CAS  Google Scholar 

  6. Saraswat A, Sharma LK, Singh S, Singh RKP (2013) Synth Met 167:31

    Article  CAS  Google Scholar 

  7. Nematollahi D, Forooghi Z (2003) Electroanalysis 15:1639

    Article  CAS  Google Scholar 

  8. Bard AJ, Faulker LR (2001) Electrochemical Methods, 2nd edn. Wiley, New York

    Google Scholar 

  9. Rafiee M, Nematollahi D (2008) Electrochim Acta 53:2751

    Article  CAS  Google Scholar 

  10. Fotouhi L, Tammari E, Asadi S, Heravi MM, Nematollahi D (2009) Int J Chem Kinet 41:426

    Article  CAS  Google Scholar 

  11. Esmaili R, Nematollahi D (2012) J Electrochem Soc 159:H792

    Article  CAS  Google Scholar 

  12. Nematollahi D, Bamzadeh M, Shayani-Jam H (2010) Chem Pharm Bull 58:23

    Article  CAS  Google Scholar 

  13. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1990) Instrumental methods in electrochemistry. Ellis Horwood Limited, New York

    Google Scholar 

  14. Saveant JM (2006) Elements of molecular and biomolecular electrochemistry. John Wiley & Sons, Jersey

    Book  Google Scholar 

  15. Esmaili R, Varmaghani, Nematollahi D (2012) J Electrochem Soc 159:H680

    Article  CAS  Google Scholar 

  16. Nematollahi D, Maleki A (2009) Electrochem Commun 11:488

    Article  CAS  Google Scholar 

  17. Wang G, Fu X, Huang J, Wu L, Deng J (2011) J Electroanal Chem 661:351

    Article  CAS  Google Scholar 

  18. Kadar M, Nagy Z, Karancsi T, Farsang G (2001) Electrochim Acta 46:3405

    Article  CAS  Google Scholar 

  19. Miras MC, Silber JJ, Serno L (1986) J Electroanal Chem 2019:367

    Article  Google Scholar 

  20. Dvorak V, Nemec I, Zyka J (1967) Microchem J 12:324

    Article  CAS  Google Scholar 

  21. Salavagione HJ, Arias J, Garces P, Morallon E, Barbero C, Vazquez JL (2004) J Electroanal Chem 565:375

    Article  CAS  Google Scholar 

  22. Steckan E, Baizer MM, Lund H (eds) (1991) Organic electrochemistry, an introduction and a guide. Marcel Dekker, New York, p 15

    Google Scholar 

  23. Esmaili R, Nematollahi D (2011) Electrochim Acta 56:3899

    Article  CAS  Google Scholar 

  24. Beiginejad H, Nematollahi D, Varmaghani F (2013) J Electrochem Soc 160:H41

    Article  CAS  Google Scholar 

  25. Nematollahi D, Shayani-Jam H, Alimoradi M, Niroomand S (2009) Electrochim Acta 54:7407

    Article  CAS  Google Scholar 

  26. Beiginejad H, Nematollahi D (2013) Electrochim Acta 114:242

    Article  CAS  Google Scholar 

  27. Beiginejad H, Nematollahi D (2014) J Org Chem 79:6326

    Article  CAS  Google Scholar 

  28. Beiginejad H, Nematollahi D, Varmaghani F, Bayat M (2013) J Electrochem Soc 160:H469

    Article  CAS  Google Scholar 

  29. Kirdant AS, Magar BK, Chondhekar TK (2012) J Chem Biol Phys Sci 2:147

    CAS  Google Scholar 

  30. Beginejad H, Nematollahi D, Varmaghani F, Shayani-Jam H (2013) Monatsh Chem 144:1481

    Article  CAS  Google Scholar 

  31. Beiginejad H, Nematollahi D, Varmaghani F, Bayat M (2013) J Electrochem Soc 160:G3001

    Article  CAS  Google Scholar 

  32. Varmaghani F, Nematollahi D, Mallakpour S, Esmaili R (2012) Green Chem 14:963

    Article  CAS  Google Scholar 

  33. Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B. 04. Gaussian, Inc., Pittsburgh

    Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. HyperChem (1997) Release 5.02. Hypercube Inc., Gainesville

    Google Scholar 

  37. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beiginejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiginejad, H., Nematollahi, D. Mechanistic study of electrochemical oxidation of 2,5-diethoxy-4-morpholinoaniline in aqueous solutions: hydrolysis, trimerization, and hydroxylation processes. Monatsh Chem 146, 1495–1502 (2015). https://doi.org/10.1007/s00706-015-1409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1409-8

Keywords

Navigation