Skip to main content
Log in

Lithium triflate (LiOTf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A series of diverse polyfunctionalized quinolines were easily prepared in excellent yields via a Friedlander reaction of o-aminoaryl ketone or o-aminoaryl aldehyde with α-methylene ketones using lithium triflate as an expeditious catalyst under solvent free conditions. The protocol provides a practical and straightforward approach toward highly functionalized quinoline derivatives in excellent yields. The catalyst is easily recoverable and less sensitive to moisture, which makes this protocol more advantageous.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chauhan PMS, Srivastava SK (2001) Curr Med Chem 8:1535

    Article  CAS  Google Scholar 

  2. Larsen RD, Corley EG, King AO, Carrol JD, Davis P, Verhoeven TR, Eider PJ, Labelle M, Gauthier JY, Xiang YB, Zamboni RJ (1996) J Org Chem 61:3398

    Article  CAS  Google Scholar 

  3. Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC (2001) J Med Chem 44:2374

    Article  CAS  Google Scholar 

  4. Roma G, Braccio MD, Grossi G, Mattioli F, Ghia M (2000) Eur J Med Chem 35:1021

    Article  CAS  Google Scholar 

  5. Morizawa Y, Okazoe T, Wang SZ, Sasaki J, Ebisu H, Nishikawa M, Shinyama H (2001) J Fluorine Chem 109:83

    Article  CAS  Google Scholar 

  6. Saito I, Sando S, Nakatani K (2001) Bioorg Med Chem 9:2381

    Article  Google Scholar 

  7. Collin G, Höke H (2000) Quinoline and isoquinoline. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  8. Kouznetsov VV, Mendez LYV, Gomez CMM (2005) Curr Org Chem 9:141

    Article  CAS  Google Scholar 

  9. Jiang B, Si Y-G (2002) J Org Chem 67:9449

    Article  CAS  Google Scholar 

  10. Jia CS, Zhang Z, Tub SJ, Wang GW (2006) Org Biomol Chem 4:104

    Article  CAS  Google Scholar 

  11. Marco-Contelles J, Perez-Mayoral E, Samadi A, do Carmo Carreiras M, Soriano E (2009) Chem Rev 109:2652

    Article  CAS  Google Scholar 

  12. Li AH, Beard DJ, Coate H, Honda A, Kadablbajoo M, Kleinberg A, Laufer R, Mulvihill KM, Nigro A, Rastogi P, Siu MW, Steinig AG, Wang T, Zwerner D, Crew AP, Mulvihill MJ (2010) Synthesis 10:1629

    Google Scholar 

  13. Domínguez-Fernández F, López-Sanz J, Pérez-Mayoral E, Bek D, Martín-Aranda RM, López-Peinado AJ, Čejka J (2009) ChemCatChem 1:241

    Article  Google Scholar 

  14. Wang J, Fan X, Zhang X, Han L (2004) Can J Chem 82:1192

    Article  CAS  Google Scholar 

  15. Yadav JS, Reddy BVS, Sreedhar P, Rao RS, Nagaiah K (2004) Synthesis 14:2381

    Google Scholar 

  16. Das B, Damodar K, Chowdhury N, Kumar RA (2007) J Mol Catal 274:148

    Article  CAS  Google Scholar 

  17. Sridharan V, Ribelles P, Ramos MT, Menendez JC (2009) J Org Chem 74:5715

    Article  CAS  Google Scholar 

  18. Palimkar SS, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2003) J Org Chem 68:9371

    Article  CAS  Google Scholar 

  19. Zhang X-L, Wang Q-Y, Sheng S-R, Wang Q, Liu XL (2009) Synth Commun 39:3293

    Article  CAS  Google Scholar 

  20. Wu J, Xia H-G, Gao K (2006) Org Biomol Chem 4:126

    Article  CAS  Google Scholar 

  21. Chen Y, Huang J, Hwang T-L, Li TJ, Cui S, Chan J, Bio M (2012) Tetrahedron Lett 53:3237

    Article  CAS  Google Scholar 

  22. Karimi B, Maleki J (2003) J Org Chem 68:4951

    Article  CAS  Google Scholar 

  23. Karimi B, Maleki J (2002) Tetrahedron Lett 43:5353

    Article  CAS  Google Scholar 

  24. Lubineau A, Drouillat B (1997) J Carbohydr Chem 16:1179

    Article  CAS  Google Scholar 

  25. Firouzabadi H, Karimi B, Eslami S (1999) Tetrahedron Lett 40:4055

    Article  CAS  Google Scholar 

  26. Auge J, Leroy F (1996) Tetrahedron Lett 43:7715

    Article  Google Scholar 

  27. Dindulkar SD, Parthiban P, Jeong YT (2012) Monatsh Chem 143:113

    Article  CAS  Google Scholar 

  28. Dindulkar SD, Puranik VG, Jeong YT (2012) Tetrahedron Lett 53:4376

    Article  CAS  Google Scholar 

  29. Veeranarayana RM, Chandra SRG, Jeong YT (2012) Tetrahedron 68:6820

    Article  Google Scholar 

  30. Abdollahi-Alibeik M, Pouriayevali M (2012) Catal Commun 22:13

    Article  CAS  Google Scholar 

  31. Sridharan V (2009) J Org Chem 74:5715

    Article  CAS  Google Scholar 

  32. Hasaninejad A (2011) Green Chem 13:958

    Article  CAS  Google Scholar 

  33. Ghassamipour S (2009) Tetrahedron Lett 50:514

    Article  CAS  Google Scholar 

  34. Genovese S (2011) Tetrahedron Lett 52:3474

    Article  CAS  Google Scholar 

  35. Zhou T (2008) Lett Org Chem 5:47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Second Phase of Brain Korea (BK21) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon Tae Jeong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atar, A.B., Dindulkar, S.D. & Jeong, Y.T. Lithium triflate (LiOTf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions. Monatsh Chem 144, 695–701 (2013). https://doi.org/10.1007/s00706-012-0906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0906-2

Keywords

Navigation