Skip to main content
Log in

Mechanistic study on the oxidation of l-phenylalanine by copper(III) in aqueous alkaline medium: a kinetic approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Oxidation of the amino acid l-phenylalanine by diperiodatocuprate(III) in alkaline medium at constant ionic strength of 0.25 mol dm−3 was studied spectrophotometrically at different temperatures (298–313 K). The reaction between diperiodatocuprate(III) and l-phenylalanine in alkaline medium exhibits 1:2 stoichiometry. Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidence, a mechanism involving monoperiodatocuprate(III) as the reactive oxidant species has been proposed, proceeding through the formation of a complex and reaction of the intermediate of l-phenylalanine with monoperiodatocuprate(III) to give the products. The products were identified by spot test, infrared (IR), and gas chromatography-mass spectrometry (GC-MS). The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and are discussed. The thermodynamic quantities were determined for different equilibrium steps. The isokinetic temperature was also calculated and found to be 331 K.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. Mahadevappa DS, Rangappa KS, Gouda NM, Thimmegowda B (1982) Int J Chem Kinet 14:1183

    Article  CAS  Google Scholar 

  2. Mahanti MK, Laloo D (1990) J Chem Soc Dalton Trans 311

  3. Kulkarni RM, Bilehal DC, Nandibewoor ST (2003) Transition Met Chem 28:199

    Article  CAS  Google Scholar 

  4. Balreddy K, Sethuram B, Navneeth Rao T (1981) Indian J Chem A 20:395

    Google Scholar 

  5. Chougale RB, Hiremath GA, Nandibewoor ST (1997) Polish J Chem 711:1471

    Google Scholar 

  6. Reddy B, Sethuram B, Navaneeth Rao T (1984) Indian J Chem A 23:593

    Google Scholar 

  7. Kumar A, Kumar P, Ramamurthy P (1999) Polyhedron 18:773

    Article  CAS  Google Scholar 

  8. Kumar A, Kumar P (1999) J Phys Org Chem 12:79

    Article  CAS  Google Scholar 

  9. Kumar A, Vaishali A, Ramamurthy P (2000) Int J Chem Kinet 32:286

    Article  CAS  Google Scholar 

  10. Shan H, Qian J, Gao MZ, Shen SG, Sun HW (2004) Turk J Chem 28:9

    CAS  Google Scholar 

  11. Niu W, Zhu Y, Hu K, Tong C, Yang H (1996) Int J Chem Kinet 28:899

    Article  CAS  Google Scholar 

  12. Rozovoskii GI, Misyavichyus AK, Prokopchik AY (1975) Kinet Catal 16:337

    Google Scholar 

  13. Reddy B, Sethuram B, Navaneeth Rao T (1978) Indian J Chem A 16:313

    Google Scholar 

  14. Karlin KD, Gultneh Y (1997) In: Lipard SJ (ed) Progress in inorganic chemistry, vol 35. Wiley, New York, p 220

  15. Tolman WB (1997) Acc Chem Res 30:227

    Article  CAS  Google Scholar 

  16. Kovat Z (1959) Acta Chim Hung 21:247

    Google Scholar 

  17. Kovat Z (1960) Acta Chim Hung 22:313

    Google Scholar 

  18. Kitajima KN, Moro-oka Y (1994) Chem Rev 94:737

    Article  CAS  Google Scholar 

  19. Halcrow MA (2001) Angew Chem Int Ed 40:816

    Article  Google Scholar 

  20. Peisach J, Alsen P, Blumberg WE (1966) The biochemistry of copper. Academic, New York, p 49

    Google Scholar 

  21. Sethuram B (2003) Some aspects of electron transfer reactions involving organic molecules. Allied, New Delhi, p 73

  22. Hiremath GC, Mulla RM, Nandibewoor ST (2005) J Chem Res 197

  23. Kolthoff IM, Meehan EJ, Carr EM (1953) J Am Chem Soc 75:1439

    Article  CAS  Google Scholar 

  24. Bhattacharya S, Banerjee P (1996) Bull Chem Soc Jpn 69:3475

    Article  CAS  Google Scholar 

  25. Reddy KB, Sethuram B, Navaneeth Rao T (1987) Z Phys Chem 268:706

    CAS  Google Scholar 

  26. Bailar JC Jr, Emeleus HJ, Nyholm SR, Trotman-Dickenson AF (1975) Comprehensive inorganic chemistry, vol 2. Pergamon, Oxford, p 1456

    Google Scholar 

  27. Chang R (1981) Physical chemistry with applications to biological systems. McMillan, New York, p 326

    Google Scholar 

  28. Hosamani RR, Shetti NP, Nandibewoor ST (2009) Kinet Catal 50:530

    Article  CAS  Google Scholar 

  29. Kiran TS, Hiremath DC, Nandibewoor ST (2007) Z Phys Chem 221:501

    CAS  Google Scholar 

  30. Rangappa KS, Raghavendra MP, Mahadevappa DS, Channegouda D (1998) J Org Chem 63:531

    Article  CAS  Google Scholar 

  31. Bilehal DC, Kulkarni RM, Nandibewoor ST (2001) Can J Chem 79:1926

    Article  CAS  Google Scholar 

  32. Weissberger A (1974) In: Lewis ES (ed) Investigations of rates and mechanism of reactions in techniques of chemistry, vol 4. Wiley, New York, p 421

  33. Moore FM, Hicks KW (1976) J Inorg Nucl Chem 38:379

    Article  Google Scholar 

  34. Hiremath DC, Sirsalmath KT, Nandibewoor ST (2008) Catal Lett 122:144

    Article  CAS  Google Scholar 

  35. Lewis ES (1974) Investigations of rates and mechanisms of reactions, 3rd edn. Wiley, New York, p 415

    Google Scholar 

  36. Exner O (1972) Collect Czech Chem Commun 37:1425

    CAS  Google Scholar 

  37. Leffler JE (1955) J Org Chem 20:1202

    Article  CAS  Google Scholar 

  38. Jaiswal PK, Yadava KL (1973) Indian J Chem 11:83

    Google Scholar 

  39. Murthy CP, Sethuram B, Navaneeth Rao T (1981) Z Phys Chem 262:336

    CAS  Google Scholar 

  40. Jeffery GH, Bassett J, Mendham J, Denny RC (1996) Vogel’s text book of quantitative chemical analysis, 5th edn. ELBS, Longman, Essex, p 455

  41. Panigrahi GP, Misro PK (1978) Indian J Chem A 16:201

    Google Scholar 

  42. Feigl F (1975) Spot tests in organic analysis. Elsevier, New York, p 333

    Google Scholar 

  43. Jeffery GH, Bassett J, Mendham J, Denny RC (1996) Vogel’s text book of quantitative chemical analysis, 5th edn. ELBS, Longman, Essex, p 679

  44. Hiremath DC, Kiran TS, Nandibewoor ST (2007) Int J Chem Kinet 39:236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Appendix

Appendix

According to Scheme 1

$$ {\text{Rate}} = {\frac{{ - \text{d}[{\text{DPC}}]}}{{{\text{d}}t}}} = k[C] = {\frac{{kK_{1} K_{2} K_{3} \left[ {{\sc{l}}{\text{-PA}}}\right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)_{2} } \right]^{3 - } }}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}}, $$
(7)
$$ \begin{aligned} \left[ {\text{DPC}} \right]_{\text{T}} & = \left[ {\text{DPC}} \right]_{\text{f}} + \left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)} \right]^{4 - } + \left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)} \right]^{ - } + {\text{Complex}}\;({\text{C}}) \\ & = \left[ {\text{DPC}} \right]_{\text{f}} \left[ {{\frac{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right] + K_{1} \left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]\left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\sc{l}}{\text{-PA}}}\right]}}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}}} \right] \\ \end{aligned}, $$
(8)

where [DPC]T and [DPC]f refer to total and free DPC concentrations, respectively. The free [DPC] is given by

$$ \left[ {\text{DPC}} \right]_{\text{f}} = {\frac{{\left[ {\text{DPC}} \right]_{\text{T}} \, \left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right] + K_{1} \left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]\left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\sc{l}}{\text{-PA}}}\right]}}} .$$
(9)

Similarly, total [OH] can be calculated as

$$ \left[ {{\text{OH}}^{ - } } \right]_{\text{T}} = \left[ {{\text{OH}}^{ - } } \right]_{\text{f}} + \left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)} \right]^{4 - } + \left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)} \right]^{ - } + [{\text{C]}} ,$$
(10)
$$ \begin{aligned} & = \left[ {{\text{OH}}^{ - } } \right]_{\text{f}} + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Cu}}({\text{OH}})_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)_{2} } \right]^{3 - } + {\frac{{K_{1} K_{2} \left[ {{\text{Cu}}\left( {\text{OH}} \right)_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)_{2} } \right]^{3 - } \left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}} \\ & \quad + {\frac{{K_{1} K_{2} K_{3} \left[ {{\text{Cu}}\left( {\text{OH}} \right)_{2} \left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)_{2} } \right]^{3 - } \left[ {{\text{OH}}^{ - } } \right]\left[ {{\sc{l}}{\text{-PA}}}\right]}}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}} \\ \end{aligned}. $$
(11)

In view of the low concentrations of DPC used, the second, third, and fourth term in the above equation are neglected; therefore,

$$ \left[ {\text{OH}} \right]_{\text{T}} = \left[ {\text{OH}} \right]_{\text{f}}, $$
(12)

similarly

$$ \left[ {{\sc{l}}{\text{-PA}}}\right]_{\text{T}} = \left[ {{\sc{l}}{\text{-PA}}}\right]_{\text{f}} .$$
(13)

Substituting Eqs. 9, 10, and 12 into Eq. 7, we get

$$ {\text{Rate}} = {\frac{{kK_{1} K_{2} K_{3} \left[ {{\sc{l}}{\text{-PA}}}\right]\left[ {{\text{OH}}^{ - } } \right]\left[ {\text{DPC}} \right]}}{{\left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right] + K_{1} \left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]\left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\sc{l}}{\text{-PA}}}\right]}}}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosamani, R.R., Hegde, R.N. & Nandibewoor, S.T. Mechanistic study on the oxidation of l-phenylalanine by copper(III) in aqueous alkaline medium: a kinetic approach. Monatsh Chem 141, 1069–1076 (2010). https://doi.org/10.1007/s00706-010-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0377-2

Keywords

Navigation