Skip to main content

Advertisement

Log in

Prediction of antibacterial activity of pleuromutilin derivatives by genetic algorithm–multiple linear regression (GA–MLR)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Use of quantitative structure–activity relationships for prediction of the antibacterial activity of pleuromutilin derivatives was studied. A suitable set of molecular descriptors was calculated and the important descriptors were selected by using the variable selections of stepwise multiple linear regression and genetic algorithm. Principal-components analysis was used to select the training set. The models were validated by use of leave-one-out (LOO) cross-validation, external test set, and the Y-randomization test. Comparison of the results obtained revealed the superiority of the genetic algorithm over the stepwise multiple regression method for feature selection. One genetic algorithm–multiple linear regression (GA–MLR) model with six selected descriptors was obtained. The root mean square errors of the training and test sets for the GA–MLR model were calculated to be 0.423 and 0.523, and the correlation coefficients were 0.839 and 0.807. The statistical parameter of LOO cross validation test correlation coefficients on the GA–MLR model was 0.760. The predictive ability of the model was satisfactory and it can be used for designing similar groups of antibacterial compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Livermore DM (2003) Clin Infect Dis 36:1058

    Article  Google Scholar 

  2. Ohno A (2004) Infect Control 13:1012

    CAS  Google Scholar 

  3. Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2008) Bioorg Med Chem Let 18:3556

    Article  CAS  Google Scholar 

  4. Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2008) Bioorg Med Chem Let 19:170

    Article  CAS  Google Scholar 

  5. Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2009) Bioorg Med Chem Let 19:175

    Article  CAS  Google Scholar 

  6. Hill DL (1972) The biochemistry and physiology of tetrahymena, 1st edn. Academic Press, New York, p 230

    Google Scholar 

  7. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  8. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Bull Korean Chem Soc 29:833

    Article  CAS  Google Scholar 

  9. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Monatsh Chem 139:1423

    Article  CAS  Google Scholar 

  10. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2009) Monatsh Chem 140:15

    Article  CAS  Google Scholar 

  11. Hansch C, Taylor J, Sammes P (1990) Comprehensive medicinal chemistry: the rational design, mechanistic study and therapeutic application of chemical compounds, vol 6. Pergamon, New York, pp 1–19

  12. Moran PAP (1950) Biometrika 37:17

    CAS  Google Scholar 

  13. Geary RC (1954) Incorp Statist 5:115

    Article  Google Scholar 

  14. Hu R, Doucet JP, Delamar M, Zhang R (2009) Eur J Med Chem 44:2158

    Article  CAS  Google Scholar 

  15. Deeb O, Hemmateenejad B (2007) Chem Biol Drug Des 70:19

    Article  CAS  Google Scholar 

  16. HyperChem Release 7, HyperCube Inc (2002). http://www.hyper.com

  17. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Todeschini R, Milano Chemometrics and QSPR Group (2002). http://www.disat.unimib.it/chm

  19. Holland H (1975) Adaption in natural and artificial systems. The University of Michigan, Ann Arbor

    Google Scholar 

  20. Cartwright HM (1993) Applications of artificial intelligence in chemistry. Oxford University, Oxford

    Google Scholar 

  21. The Mathworks Inc (2002) Genetic algorithm and direct search toolbox users guide, Massachusetts

  22. Agrawal VK, Khadikar PV (2001) Bioorg Med Chem 9:3035

    Article  CAS  Google Scholar 

  23. OECD (2007) Guidance document on the validation of (quantitative) structure–activity relationships [(Q)SAR] models. Organisation for Economic Co-Operation and Development, Paris

    Google Scholar 

  24. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt JJM, Tong W, Veith G, Yang C (2005) Altern Lab Anim 33:155

    CAS  Google Scholar 

  25. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Environ Health Perspect 111:1361

    CAS  Google Scholar 

  26. Jaworska JS, Nikolova JN, Aldenberg T (2005) Altern Lab Anim 33:445

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nekoei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolatabadi, M., Nekoei, M. & Banaei, A. Prediction of antibacterial activity of pleuromutilin derivatives by genetic algorithm–multiple linear regression (GA–MLR). Monatsh Chem 141, 577–588 (2010). https://doi.org/10.1007/s00706-010-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0299-z

Keywords

Navigation