Skip to main content

Advertisement

Log in

Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction acidity constant (pK a ) for various nitrogen-containing compounds. A data set that consisted of 282 various compounds, including 55 anilines, 77 amines, 82 pyridines, 14 pyrimidines, 26 imidazoles and benzimidazoles, and 28 quinolines, is used in this work. A large number of theoretical descriptors were calculated for each compound. The first 179 principal components (PCs) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PCs, the genetic algorithm was employed for selection of the best set of extracted PCs for PC-MLR and PC-ANN models. The models were generated using 15 PCs as variables. For evaluation of the predictive power of the models, pK a values of 56 compounds in the prediction set were calculated. Root mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 1.4863 and 0.0750. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN model relative to the PC-GA-MLR model. Mean percent deviation for the PC-GA-ANN model in the prediction set is 2.123. The improvements are due to the fact that pK a of the compounds demonstrates non-linear correlations with the PCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao YH, Yuan X, Yuan LH, Wang LS (1996) Bull Environ Contam Toxicol 57:242

    Article  CAS  Google Scholar 

  2. Alines P (1996) J Planar Chromatogr Mod TLC 9:52

    Google Scholar 

  3. Jover J, Bosque R, Sales J (2007) QSAR Comb Sci 26:385

    Article  CAS  Google Scholar 

  4. Yao XJ, Wang YW, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2002) Chemom Intell Lab Syst 62:217

    Article  CAS  Google Scholar 

  5. Guha R, Serra JR, Jurs PC (2004) J Mol Graph Model 23:1

    Article  CAS  Google Scholar 

  6. Krogsgaard-Larsen P, Liljefors T, Madsen U (2002) Textbook of drug design and discovery. Taylor & Francis, London

    Google Scholar 

  7. Consonni V, Todeschini R, Pavan M, Gramatica P (2002) J Chem Inf Comput Sci 42:693

    CAS  Google Scholar 

  8. Karthikeyan M, Glen RC, Bender A (2005) J Chem Inf Model 45:581

    Article  CAS  Google Scholar 

  9. Melnikov AA, Palyulin VA, Zefirov NS (2007) J Chem Inf Model 47:2077

    Article  CAS  Google Scholar 

  10. Ajmani S, Rogers SC, Barley MH, Livingstone DJ (2006) J Chem Inf Model 46:2043

    Article  CAS  Google Scholar 

  11. Katritzky AR, Stoyanova-Slavova IB, Dobchev DA, Karelson M (2007) J Mol Graph Model 26:529

    Article  CAS  Google Scholar 

  12. Shamsipur M, Siroueinejad A, Hemmateenejad B, Abbaspour A, Sharghi H, Alizadeh K, Arshadi S (2007) J Electranal Chem 600:345

    Article  CAS  Google Scholar 

  13. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Monatsh Chem doi:10.1007/s00706-008-0951-z

  14. Avram S, Berner H, Milac AL, Wolschann P (2008) Monatsh Chem 139:407

    Article  CAS  Google Scholar 

  15. Prakasvudhisarn C, Lawtrakul L (2008) Monatsh Chem 139:197

    Article  CAS  Google Scholar 

  16. Lawtrakul L, Prakasvudhisarn C (2005) Monatsh Chem 136:1681

    Article  CAS  Google Scholar 

  17. Todeschini, V. Consonni (2000) Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany

  18. Sutter JM, Kalivas JH, Lang PM (1992) J Chemometr 6:217

    Article  CAS  Google Scholar 

  19. Vendrame R, Braga RS, Takahata Y, Galvao DS (1999) J Chem Inf Comput Sci 39:1094

    CAS  Google Scholar 

  20. Malinowski ER (2002) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  21. Katritzky AR, Tulp I, Fara DC, Lauria A, Maran U, Acree WE (2005) J Chem Inf Model 45:913

    Article  CAS  Google Scholar 

  22. Hemmateenejad B, Akhond M, Miri R, Shamsipur M (2003) J Chem Inf Comput Sci 43:1328

    CAS  Google Scholar 

  23. Hemmateenejad B, Shamsipur M (2004) Internet Electron J Mol Des 3:316

    CAS  Google Scholar 

  24. Jalali-Heravi M, Kyani A (2004) J Chem Inf Comput Sci 44:1328

    CAS  Google Scholar 

  25. Hemmateenejad B, Safarpour MA, Miri R, Nesari N (2005) J Chem Inf Model 45:190

    Article  CAS  Google Scholar 

  26. Hemmateenejad B, Safarpour MA, Miri R, Taghavi F (2004) J Comput Chem 25:1495

    Article  CAS  Google Scholar 

  27. Depczynski U, Frost VJ, Molt K (2000) Anal Chim Acta 420:217

    Article  CAS  Google Scholar 

  28. Hemmateenejad B (2005) Chemom Intell Lab Syst 75:231

    Article  CAS  Google Scholar 

  29. Goldberg DE (2000) Genetic algorithm in search, optimization and machine learning. Addison-Wesley-Longman, Reading

    Google Scholar 

  30. Cho SJ, Hermsmeier MA (2002) J Chem Inf Comput Sci 42:927

    CAS  Google Scholar 

  31. Despagne F, Massart DL (1998) Analyst 123:157

    Article  Google Scholar 

  32. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH, Germany

    Google Scholar 

  33. Meiler J, Meusinger R, Will M (2000) J Chem Inf Comput Sci 40:1169

    CAS  Google Scholar 

  34. Habibi-Yangjeh A, Nooshyar M (2005) Phys Chem Liq 43:239

    Article  CAS  Google Scholar 

  35. Habibi-Yangjeh A, Nooshyar M (2005) Bull Korean Chem Soc 26:139

    CAS  Google Scholar 

  36. Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2005) Bull Korean Chem Soc 26:2007

    CAS  Google Scholar 

  37. Habibi-Yangjeh A (2007) Phys Chem Liq 45:471

    Article  CAS  Google Scholar 

  38. Tabaraki R, Khayamian T, Ensafi AA (2006) J Mol Graph Model 25:46

    Article  CAS  Google Scholar 

  39. Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2006) J Mol Model 12:338

    Article  CAS  Google Scholar 

  40. Habibi-Yangjeh A, Esmailian M (2007) Bull Korean Chem Soc 28:1477

    CAS  Google Scholar 

  41. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Bull Korean Chem Soc 29:833

    Article  CAS  Google Scholar 

  42. Habibi-Yangjeh A, Esmailian M (2008) Chin J Chem 26:875

    Article  CAS  Google Scholar 

  43. Schuurmann G (1996) Quant Struct Act Relat 15:121

    Article  Google Scholar 

  44. Citra MJ (1999) Chemosphere 38:191

    Article  CAS  Google Scholar 

  45. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421

    Article  CAS  Google Scholar 

  46. Ma Y, Gross KC, Hollingsworth CA, Seybold PG, Murray JS (2004) J Mol Model 10:235

    Article  CAS  Google Scholar 

  47. Tehan BG, Lloyd EJ, Wong MG, Pitt WR, Gancia E, Manallack DT (2002) Quant Struct Act Relat 21:473

    Article  CAS  Google Scholar 

  48. Saiz-Urra L, Perez Gonzalez MP, Teijeira M (2006) Bioorg Med Chem 14:7347

    Article  CAS  Google Scholar 

  49. HyperChem Release 7, HyperCube, Inc., http://www.hyper.com

  50. Todeschini R, Milano Chemometrics and QSPR Group, http://www.disat.unimib.it/chm

  51. Matlab 6.5. Mathworks, 1984–2002

  52. SPSS for Windows, Statistical Package for IBM PC, SPSS Inc., http://www.spss.com

  53. Cartwright HM (1993) Applications of artificial intelligence in chemistry. Oxford University Press, Oxford

    Google Scholar 

  54. Baumann K, Albert H, Von Korff M (2002) J Chemometr 16:339

    Article  CAS  Google Scholar 

  55. Lu Q, Shen G, Yu R (2002) J Comput Chem 23:1357

    Article  CAS  Google Scholar 

  56. Ahmad S, Gromiha MM (2003) J Comput Chem 24:1313

    Article  CAS  Google Scholar 

  57. Deeb O, Hemmateenejad B, Jaber A, Garduno-Juarez R, Miri R (2007) Chemosphere 67:2122

    Article  CAS  Google Scholar 

  58. The Mathworks Inc (2002) Genetic algorithm and direct search toolbox users guide, Massachusetts

  59. The Mathworks Inc (2002) Neural network toolbox users guide, Massachusetts

Download references

Acknowledgments

The authors wish to acknowledge the vice-presidency of research, University of Mohaghegh Ardabili, for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Pourbasheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi-Yangjeh, A., Pourbasheer, E. & Danandeh-Jenagharad, M. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatsh Chem 140, 15–27 (2009). https://doi.org/10.1007/s00706-008-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-008-0049-7

Keywords

Navigation