Skip to main content
Log in

Synthesis of a dihydrotestosterone–ciprofloxacin conjugate: relationship between descriptors logP, π, R m , and V m and its antibacterial activity in S. aureus and E. coli

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work a dihydrotestosterone–ciprofloxacin conjugate was synthesized. The route involved preparation of a ciprofloxacin–ethylenediamine derivative by the reaction of ciprofloxacin with ethylenediamine using a carbodiimide or boric acid as catalysts. Additionally, the ciprofloxacin derivative was bound to dihydrotestosterone hemisuccinate to form the dihydrotestosterone–ciprofloxacin conjugate in the presence of a carbodiimide. The antibacterial activity of dihydrotestosterone–ciprofloxacin, as well as ciprofloxacin–ethylenediamine and ciprofloxacin, was evaluated in vitro on S. aureus and E. coli using the dilution method and the minimum inhibitory concentration. To delineate the structural chemical requirements of the compounds ciprofloxacin, ciprofloxacin–ethylenediamine and dihydrotestosterone–ciprofloxacin conjugate as antibacterial agents on S. aureus and E. coli, other parameters such as the descriptors logP, π, R m , and V m were calculated. The results showed that bacterial growth of the microorganisms studied was inhibited by ciprofloxacin, ciprofloxacin–ethylenediamine and dihydrotestosterone–ciprofloxacin in a dose-dependent manner. These data suggest that functional groups involved in the structure of the studied compounds are specific for their antibacterial activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pinner RW, Teutsch SM, Simonsen L, Klug LA, Graber JM, Clarke M (1996) J Am Med Assoc 275:189

    Article  CAS  Google Scholar 

  2. Crossley KB, Peterson P (1996) Clin Infect Dis 22:209

    CAS  Google Scholar 

  3. Norman DC (1996) Clin Geriatr Suppl 1:3

  4. Chambers HF (2001) Emerg Infect Dis 7:178

    Article  CAS  Google Scholar 

  5. Podschun R, Ullmann U (1998) Clin Microbiol Rev 11:589

    CAS  Google Scholar 

  6. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman N (2001) Clin Infect Dis 32:1162

    Article  CAS  Google Scholar 

  7. Rothstein DM, Hartman A, Cynamon M, Eisenstein B (2003) Expert Opin Investig Drugs 12:255

    Article  CAS  Google Scholar 

  8. Wilson WR, Karchmer AW, Dajani A (1995) J Am Med Assoc 274:1706

    Article  CAS  Google Scholar 

  9. Yoo B, Triller D, Yong C, Lodise T (2004) Ann Pharmacother 38:1226

    Article  CAS  Google Scholar 

  10. Killgore M, March K, Guglielmo B (2004) Ann Pharmacother 38:1148

    Article  CAS  Google Scholar 

  11. Hackbarth CJ, Chambers H (1989) Antimicrob Agents Chemother 33:995

    CAS  Google Scholar 

  12. Maguire GP, Arthur AD, Boustead PJ, Dwyer B, Currie B (1998) J Hosp Infect 38:273

    Article  CAS  Google Scholar 

  13. Peschel A (2002) Trends Microbiol 10:179

    Article  CAS  Google Scholar 

  14. Yeaman M, Younth N (2005) Pharmacol Rev 55:27

    Article  Google Scholar 

  15. Gordon E, Barrett R, Dower J (1994) J Med Chem 37:1385

    Article  CAS  Google Scholar 

  16. Schwab U, Gilligan P, Jaynes J, Henke D (1999) Antimicrob Agents Chemother 43:1435

    CAS  Google Scholar 

  17. Patch JA, Barron A (2003) J Am Chem Soc 125:12092

    Article  CAS  Google Scholar 

  18. Barry AL, Jones RN, Thornsberry C, Ayers LW, Gerlach EH, Sommers HM (1984) Antimicrob Agents Chemother 25:633

    CAS  Google Scholar 

  19. Chu DT, Fernandez PB, Maleczka RE, Nordeen CW, Pernet AG (1987) J Med Chem 30:504

    Article  CAS  Google Scholar 

  20. Tomisic ZB, Kujudzic N, Krajacic MB, Visnjevac A, Kojic-Prodic B (2002) J Mol Struct 611:73

    Article  CAS  Google Scholar 

  21. Foroumadi A, Emami S, Mehni M, Moshafi MH, Shafiee A (2005) Bioorg Med Chem Lett 15:436

    Google Scholar 

  22. Foroumadi A, Ghodsi S, Emami S, Najjari S, Samadi N, Faramazi MA, Beikmohammadi L, Shirazi FH, Shafiee A (2006) Bioorg Med Chem Lett 16:3499

    Article  CAS  Google Scholar 

  23. Foroumadi A, Emami S, Mansouri S, Javidnia A, Sheid-Adeli N, Shirazi FH, Shafiee A (2007) Eur J Med Chem 42:985

    Article  CAS  Google Scholar 

  24. Arayne MS, Sultana N, Haroon U, Mesaik MA, Asif M (2009) Arch Pharm Res 32:967

    Article  Google Scholar 

  25. Chiong R, Betancourt A (1985) Inst Nal Hig, Epidemiol Microbiol, Cuba, pp 24–30

  26. Rannard SP, Davis NJ (2000) Org Lett 2:2117

    Article  CAS  Google Scholar 

  27. Bode JW, Sohn S (2007) J Am Chem Soc 129:13798

    Article  CAS  Google Scholar 

  28. Hauser RS, Hoffenberg D (1995) J Org Chem 20:1448

    Article  Google Scholar 

  29. Medvedeva A, Andreev M, Safronova L, Sarapulova G (2001) Arkivoc ix:143

    Google Scholar 

  30. Levin D (1997) Org Process Res Dev 1:182

    Article  CAS  Google Scholar 

  31. Pingwah T (2005) Organic Synth 81:262

    Google Scholar 

  32. DeSilva NS (2003) Am J Respir Cell Mol Biol 29:757

    Article  CAS  Google Scholar 

  33. Figueroa-Valverde L, Díaz-Cedillo F, Tolosa L, Maldonado G, Ceballos-Reyes G (2006) J Mex Chem Soc 50:42

    Google Scholar 

  34. Sirot D, Goldstein F, Soussy C, Courtieu A, Husson M, Lemozy J, Meyran M, Morel M, Perez R, Quentin-Noury C (1992) Antimicrob Agents Chemother 36:1677

    CAS  Google Scholar 

  35. Bryan L, Vandenelzen H (1975) J Antibiot 28:696

    CAS  Google Scholar 

  36. Barcina I, Arana I, Santorum P, Iriberri J, Egea L (1995) J Microbiol Methods 22:139

    Article  Google Scholar 

  37. Fisher-Kates W (1990) Handbook of lipid research: glycolipids, phospholipids, and sulfoglycolipids. In: Kates M (ed) Plenum Publishing Corp., New York, pp 123–234

  38. Figueroa-Valverde L, Díaz-Cedillo F, López-Ramos M, Díaz-Ku E (2009) Asian J Chem 21:6209

    CAS  Google Scholar 

  39. Figueroa-Valverde L, Díaz-Cedillo F, López-Ramos M, Díaz-Ku E (2009) Asian J Chem 21:7173

    CAS  Google Scholar 

  40. Ding B, Guan Q, Walsh JP, Boswell JS, Winter TW, Winter ES, Boyd S, Li C, Savage P (2002) J Med Chem 45:663

    Article  CAS  Google Scholar 

  41. Ding B, Taotofa U, Orsak T, Chadwell M, Savage P (2004) Org Lett 6:3433

    Article  CAS  Google Scholar 

  42. Leo A, Jow PY, Silipo C (1975) J Med Chem 18:865

    Article  CAS  Google Scholar 

  43. Leo A, Hoekman D (2000) Perspect Drug Discov Design 18:19

    Article  CAS  Google Scholar 

  44. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  45. Mannhold R, Waterbeemd H (2001) J Comput Aided Mol Design 15:337

    Article  CAS  Google Scholar 

  46. Hansch CA (1969) Acc Chem Res 2:232

    Article  CAS  Google Scholar 

  47. Bryantsev SV, Hay PB (2006) J Phys Chem 110:4678

    CAS  Google Scholar 

  48. Erlanger FB, Borek F, Beiser MS, Lieberman S (1957) J Biol Chem 228:713

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Enriqueta Valverde Anzurez, Glafira Valverde Anzurez, and Gloria Velazquez Zea for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lauro Figueroa-Valverde, Francisco Díaz-Cedillo or Abelardo Camacho-Luis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa-Valverde, L., Díaz-Cedillo, F., Camacho-Luis, A. et al. Synthesis of a dihydrotestosterone–ciprofloxacin conjugate: relationship between descriptors logP, π, R m , and V m and its antibacterial activity in S. aureus and E. coli . Monatsh Chem 141, 373–380 (2010). https://doi.org/10.1007/s00706-010-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0263-y

Keywords

Navigation