Skip to main content
Log in

What to Learn from a Comparative Genomic Sequence Analysis of L-Carnitine Dehydrogenase

  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary.

In contrast to eukaryotic cells certain eubacterial strains have acquired the ability to utilize L-carnitine (R-(–)-3-hydroxy-4-(trimethylamino)butyrate) as sole source of energy, carbon and nitrogen. The first step of the L-carnitine degradation to glycine betaine is catalysed by L-carnitine dehydrogenase (L-CDH, EC 1.1.1.108) and results in the formation of the dehydrocarnitine. During the oxidation of L-carnitine a simultaneous conversion of the cofactor NAD+ to NADH takes place. This catabolic reaction has always been of keen interest, because it can be exploited for spectroscopic L-carnitine determination in biological fluids – a quantification method, which is developed in our lab – as well as L-carnitine production.

Based on a cloned L-CDH sequence an expedition through the currently available prokaryotic genomic sequence space began to mine relevant information about bacterial L-carnitine metabolism hidden in the enormous amount of data stored in public sequence databases. Thus by means of homology-based and context-based protein function prediction is revealed that L-CDH exists in certain eubacterial genomes either as a protein of approximately 35 kDa or as a homologous fusion protein of approximately 54 kDa with an additional putative domain, which is predicted to possess a thioesterase activity. These two variants of the enzyme are found on one hand in the genome sequence of bacterial species, which were previously reported to decompose L-carnitine, and on the other hand in gram-positive bacteria, which were not known to express L-CDH. Furthermore we could not only discover that L-CDH is located in a conserved genetic entity, which genes are very likely involved in this L-carnitine catabolic pathway, but also pinpoint the exact genomic sequence position of several other enzymes, which play an essential role in the bacterial metabolism of L-carnitine precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Pittner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uanschou, C., Frieht, R. & Pittner, F. What to Learn from a Comparative Genomic Sequence Analysis of L-Carnitine Dehydrogenase. Monatsh. Chem. 136, 1365–1381 (2005). https://doi.org/10.1007/s00706-005-0331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-005-0331-x

Navigation