Skip to main content
Log in

A Catalyst from Burkholderia cenocepacia for Efficient Anti-Prelog’s Bioreduction of 3,5-Bis(Trifluoromethyl) Acetophenone

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-3, 5-Bis(trifluoromethyl)phenyl ethanol is a key chiral intermediate for the synthesis of aprepitant. Through a genome mining approach, an NADPH-dependent short-chain dehydrogenases derived from Burkholderia cenocepacia (Bc-SDR) was discovered with excellent anti-Prelog’s stereoselectivity of reducing 3, 5-bis(trifluoromethyl) acetophenone. The enzyme with 247 amino acids was successfully expressed in Escherichia coli and the molecular weight was about 26 kDa. Optimization of reaction conditions showed that the optimum temperature and pH of the enzyme was 25 °C and pH 7.0, respectively. Strong enhancement of enzyme activity was observed in the presence of 1 mM Mn2+. In addition, Bc-SDR exhibited (R)-selective enantioselectivity toward acetophenone derivatives, which makes it a potential catalyst for obtaining aromatic chiral alcohols as useful blocks in pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moore, J. C., Pollard, D. J., & Kosjek, B. (2007). Advances in the enzymatic reduction of ketones. Accounts of Chemical Research, 40, 1412–1419.

    Article  CAS  Google Scholar 

  2. Bornscheuer, U. T., Huisman, G. W., & Kazlauskas, R. J. (2012). Engineering the third wave of biocatalysis. Nature, 485, 185–194.

    Article  CAS  Google Scholar 

  3. Huisman, G. W., Liang, J., & Krebber, A. (2010). Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 14, 122–129.

    Article  CAS  Google Scholar 

  4. Noey, E. L., Tibrewal, N., & Jiménez-Osés, G. (2015). Origins of stereoselectivity in evolved ketoreductases. Proceedings of the National Academy of Sciences, 112, E7065–E7072.

    CAS  Google Scholar 

  5. Wang, P., Cai, J. B., & Ouyang, Q. (2011). Asymmetric biocatalytic reduction of 3,5-bis (trifluoromethyl) acetophenone to (1R)-[3,5-bis (trifluoromethyl) phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Applied Microbiology and Biotechnology, 90, 1897–1904.

    Article  CAS  Google Scholar 

  6. Gelo-Pujic, M., Le Guyader, F., & Schlama, T. (2006). Microbial and homogenous asymmetric catalysis in the reduction of 1-[3,5-bis (trifluoromethyl) phenyl] ethanone. Tetrahedron: Asymmetry, 17, 2000–2005.

    Article  CAS  Google Scholar 

  7. Brands, K. M. J., Payack, J. F., & Rosen, J. D. (2003). Efficient synthesis of NK1 receptor antagonist aprepitant using a crystallization-induced diastereoselective transformation. Journal of the American Chemical Society, 125, 2129–2135.

    Article  CAS  Google Scholar 

  8. Nakade, S., Ohno, T., & Kitagawa, J. (2008). Population pharmacokinetics of aprepitant and dexamethasone in the prevention of chemotherapy-induced nausea and vomiting. Cancer Chemotherapy and Pharmacology, 63, 75–83.

    Article  CAS  Google Scholar 

  9. Kurbanoglu, E. B., Zilbeyaz, K., & Taskin, M. (2009). Total production of (R)-3, 5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis (trifluoromethyl)-acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron: Asymmetry, 20, 2759–2763.

    Article  CAS  Google Scholar 

  10. Gai, P., Tang, C., Liu, J., Liu, Y., Zhang, C., & Wu, Z. (2013). Asymmetric anti-Prelog reduction of 3,5-bis(trifluoromethyl)-acetophenone by microbacterium oxydans C3. Chinese Journal of Applied & Environmental Biology, 19, 37–42.

    Article  Google Scholar 

  11. Li, J., Wang, P., He, J. Y., Huang, J., & Tang, J. (2013). Efficient biocatalytic synthesis of (R)-[3,5-bis (trifluoromethyl) phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Applied Microbiology and Biotechnology, 97, 6685–6692.

    Article  CAS  Google Scholar 

  12. Wang, N., Huang, J., & Luo, H. (2013). Purification and characterization of a new carbonyl reductase from Leifsonia xyli HS0904 involved in stereoselective reduction of 3, 5-bis (trifluoromethyl) acetophenone. Journal of Molecular Catalysis B: Enzymatic, 92, 1–6.

    Article  CAS  Google Scholar 

  13. Wang, N. Q., Sun, J., & Huang, J. (2014). Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency. Applied Microbiology and Biotechnology, 98, 8591–8601.

    Article  CAS  Google Scholar 

  14. Liu, Y., Tang, T. X., & Pei, X. Q. (2014). Identification of ketonereductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. Journal of Molecular Catalysis B: Enzymatic, 102, 1–8.

    Article  CAS  Google Scholar 

  15. Li, H. M., Moncecchi, J., & Truppo, M. D. (2015). Development of an immobilized ketoreductase for enzymatic (R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethanol production. Organic Process Research & Development, 19, 695–700.

    Article  CAS  Google Scholar 

  16. Chen, K., Li, K., & Deng, J. (2016). Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis (trifluoromethyl) phenyl] ethanol. Microbial Cell Factories, 15, 191.

    Article  Google Scholar 

  17. Prelog, V. (1964). Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure and Applied Chemistry, 9, 119–130.

    Article  CAS  Google Scholar 

  18. Singh, A., Basit, A., & Banerjee, U. C. (2009). Burkholderia cenocepacia: a new biocatalyst for efficient bioreduction of ezetimibe intermediate. Journal of Industrial Microbiology & Biotechnology, 36, 1369.

    Article  CAS  Google Scholar 

  19. Yıldız, T. (2015). An oxazaborolidine-based catalytic method for the asymmetric synthesis of chiral allylic alcohols. Tetrahedron: Asymmetry, 26, 497–504.

    Article  Google Scholar 

  20. Hoffmann, F., & Maser, E. (2007). Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metabolism Reviews, 39, 87–144.

    Article  CAS  Google Scholar 

  21. Kallberg, Y., Oppermann, U., & Jörnvall, H. (2002). Short-chain dehydrogenase/ reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Science, 11, 636–641.

    Article  CAS  Google Scholar 

  22. Oppermann, U., Filling, C., & Hult, M. (2003). Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chemico-Biological Interactions, 143, 247–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

Fig. S1 Multiple sequence alignment of the target sequence (NCBI Reference Sequence: ANZ75577.1, ANZ77886.1, ANZ77893.1, XP_002489352.1, XP_002492297.1, XP_002493760.1, XP_002494195.1, WP_006481546.1, WP_006481604.1, WP_006481801.1, WP_006483065.1, WP_006485075.1, WP_006485158.1, WP_006488202.1, WP_012336650.1, WP_012492403.1, WP_050013528.1, WP_058903664.1, WP_060214413.1, WP_077189930.1) with the template sequence (Leifsonia xyli HS0904) Fig. S2 Sequence alignment of the target sequence (Burkholderia cenocepacia) with the template sequence (Leifsonia xyli HS0904). (DOCX 9094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Li, H., Lu, Y. et al. A Catalyst from Burkholderia cenocepacia for Efficient Anti-Prelog’s Bioreduction of 3,5-Bis(Trifluoromethyl) Acetophenone. Appl Biochem Biotechnol 184, 1319–1331 (2018). https://doi.org/10.1007/s12010-017-2628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2628-8

Keywords

Navigation