Skip to main content

Advertisement

Log in

Interferon gamma induces cellular protein alteration and increases replication of porcine circovirus type 2 in PK-15 cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine circovirus type 2 (PCV2) infections may lead to the development of subclinical signs or chronic systemic syndromes, collectively known as “porcine circovirus-associated disease” (PCVAD) in swine. Interferon gamma (IFN-γ) is known to enhance PCV2 replication in vitro, and immune mediators may act as pivotal factors in triggering PCV2 infection progression toward PCVAD. We determined the effects of IFN-γ on PCV2 replication in PK-15 cells. PCV2 was cultured in the presence or absence of exogenous swine IFN-γ (swIFNγ). Growth curve analysis in PK-15 cells revealed that PCV2 could replicate to a significantly higher titer in swIFNγ medium. To investigate the host cell response upon PVC2 infection, differential expression of proteins in PCV2-infected PK-15 cells with or without swIFNγ stimulation was analyzed by proteomics (LC-MS/MS) analysis. A large proportion of the differentially expressed proteins in swIFNγ-treated PCV2-infected cells were found to be involved in apoptosis, cellular stress responses, cell survival/proliferation pathways, and inflammatory responses. We further confirmed the expression of these differentially expressed proteins at the mRNA levels by qRT-PCR. PCV2 infection in PK-15 cells in the presence of IFN-γ resulted in upregulation of cellular proteins in responses to stress, cell survival, and cell proliferation (Hsp90, MAP3K7, RAS-GTPase, c-myc, and 14-3-3 epsilon) as well as in an increase in the levels of proteins (CASP9 and TRAF5) related to the apoptosis pathways. Thus, PCV2 exploits several cellular biological processes through IFN activation for enhancing viral replication. This is the first evidence of IFN-γ promoting PCV2 replication in vitro via a mechanism similar to that used by several human viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allan GM, McNeilly F, Kennedy S, Daft B, Clark ED, Ellis JA, Haines DM, Meehan BM, Adair BM (1998) Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the United States of America and Europe. J Vet Diag Invest 10:3–10

    Article  CAS  Google Scholar 

  2. Meng XJ (2012) Spread like a wildfire—the omnipresence of porcine circovirus type 2 (PCV2) and its ever-expanding association with diseases in pigs. Virus Res 164:1–3

    Article  CAS  PubMed  Google Scholar 

  3. Mankertz J, Buhk HJ, Blaess G, Mankertz A (1998) Transcription analysis of porcine circovirus (PCV). Virus Genes 16:267–276

    Article  CAS  PubMed  Google Scholar 

  4. Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81:2281–2287

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Chen I, Kwang J (2005) Characterization of previously unidentified viral protein in porcine Circovirus type 2-infected cells and its role in virus-induce apoptosis. J Virol 79:8262–8274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao Z, Dong Q, Jiang Y, Opriessnig T, Wang J, Quan Y, Yang Z (2014) ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res 183:56–62

    Article  CAS  PubMed  Google Scholar 

  7. Lv Q, Guo K, Zhang G, Zhang Y (2016) The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction. J Gen Virol 97:1636–1646

    Article  CAS  PubMed  Google Scholar 

  8. Krakowa S, Ellis JA, McNeilly F, Ringer S, Rings DM, Allan G (2001) Activation of the immune System is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2). Vet Pathol 38:31–42

    Article  Google Scholar 

  9. Meerts P, Van Gucht S, Cox E, Vandebosch A, Nauwynck HJ (2005) Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunol 18:333–341

    Article  CAS  PubMed  Google Scholar 

  10. Mankertz J, Hillenbrant B (2002) Analysis of transcription of Porcine circovirus type 1. J Gen Virol 83:2743–2751

    Article  CAS  PubMed  Google Scholar 

  11. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Opriessnig T, Madson DM, Prickett JR, Kuhar DJ, Lunney K, Elsener J, Halbur PG (2008) Effect of porcine circovirus type 2 (PCV2) vaccination on porcine reproductive and respiratory syndrome virus (PRRSV) and PCV2 coinfection. Vet Microbiol 131:103–114

    Article  CAS  PubMed  Google Scholar 

  13. Tomás A, Fernandes LT, Sánchez A, Segalés J (2010) Time course differential gene expression in response to porcine circovirus type 2 subclinical infection. Vet Res 41:12

    Article  CAS  PubMed  Google Scholar 

  14. Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS (1998) Detection of novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36:2535–2541

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ (2004) Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78:8135–8145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mutthi P, Srisombundit V, Lekcharoensuk P (2015) Production of swine interferon gamma in E.coli and in vitro examination of its biological function. The 53rd Kasetsart University Annual Conference, Bangkean, Chatuchak, Thailand, 3–6 February 2015

  17. Thangthumniyom N, Juntafong T, Petcharat N, Poolperm P, Lekcharoensuk C, Lekcharoensuk P (2011) Development of a quantitative, competitive-PCR (QC-PCR) assay to determine the DNA load of porcine circovirus type 2 (PCV2) in blood and fecal swabs. Kasetsart J (Nat Sci) 45:1028–1037

    CAS  Google Scholar 

  18. Jantafong T, Boonsoongnern A, Poolperm P, Urairong K, Lekcharoensuk C, Lekcharoensuk P (2011) Genetic characterization of porcine circovirus type 2 in piglets from PMWS-affected and negative farms in Thailand. Virol J 8:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theerawatanasirikul S, Phecharat N, Prawettongsopon C, Chaicumpa W, Lekcharoensuk P (2017) Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules. Arch Virol 162:677–686

    Article  CAS  PubMed  Google Scholar 

  20. Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR (2012) Proteomic analysis of chikungunya virus infected microgial cells. PLoS One 7:e34800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janthima J, Phaonakrop N, Kittisenachai S, Roytrakul S (2009) Rapid in-gel digestion protocol for protein identification by peptide mass fingerprint. The 2nd biochemistry and molecular biology conference: Biochemistry and Molecular Biology for Regional Sustainable Development, Khon Kaen, Thailand, 7–8 May 2009

  22. Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485

    Article  CAS  PubMed  Google Scholar 

  23. Thorsell A, Portelius E, Blennow K, Westman BA (2007) Evaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21:771–778

    Article  CAS  PubMed  Google Scholar 

  24. Perkins DN, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  25. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protocols 8:1551–1566

    Article  CAS  PubMed  Google Scholar 

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McFadden G, Mohamed MR, Rahman MM, Bartee E (2009) Cytokine determinants of viral tropism. Nat Rev Immunol 9:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kropp KA, Angulo A, Ghazal P (2014) Viral enhancer mimicry of host innate-immune promoters. PLoS Pathog 10:e1003804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Netterwald J, Yang S, Wang W, Ghanny S, Cody M, Soteropoulos P, Tian B, Dunn W, Liu F, Zhu H (2005) Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol 79:5035–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marcinowski L, Lidschreiber M, Windhager L, Rieder M, Bosse JB, Rädle B, Bonfert T, Györy I, de Graaf M, da Costa OP, Rosenstiel P, Friedel CC, Zimmer R, Ruzsics Z (2012) Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 8:e1002908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torres L, Tang Q (2014) Immediate-early (IE) gene regulation of cytomegalovirus: IE1-and pp71-mediated viral strategies against cellular defenses. Virol Sin 29:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mankertz A, Mueller B, Steinfeldt T, Schmitt C, Finsterbusch T (2003) New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2. J Virol 77:9885–9893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramamoorthy S, Huang FF, Huang YW, Meng XJ (2009) Interferon-mediated enhancement of in vitro replication of porcine circovirus type 2 is influenced by an interferon-stimulated response element in the PCV2 genome. Virus Res 145:236–243

    Article  CAS  PubMed  Google Scholar 

  34. Ramamoorthy S, Opriessnig T, Pal N, Huang FF, Meng XJ (2011) Effect of an interferon-stimulated response element (ISRE) mutant of porcine circovirus type 2 (PCV2) on PCV2-induced pathological lesions in a porcine reproductive and respiratory syndrome virus (PRRSV) co-infection model. Vet Microbiol 147:49–58

    Article  CAS  PubMed  Google Scholar 

  35. Connolly PF, Fearnhead HO (2017) Viral hijacking of host caspases: an emerging category of pathogen–host interactions. Cell Death Differ 24:1401–1410

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghosh AK, Steele R, Meyer K, Ray R, Ray RB (1999) Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol 80:1179–1183

    Article  CAS  PubMed  Google Scholar 

  37. Moody CA, Fradet-Turcotte A, Archambault J, Laimins LA (2007) Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. PNAS 104:19541–19546

    Article  CAS  PubMed  Google Scholar 

  38. Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, Kobata T, Santee SM, Ware CF, Rennert PD, Taniguchi M, Yagita H, Okumura K (1999) Targeted disruption of TRAF5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci USA 96:9803–9808

    Article  CAS  PubMed  Google Scholar 

  39. Au PY, Yeh WC (2007) Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 597:32–47

    Article  PubMed  Google Scholar 

  40. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81:1339–1349

    Article  CAS  PubMed  Google Scholar 

  42. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, McCormick F, Graeber TG, Christofk HR (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mabratu Y, Tesfaigzi Y (2009) How ERK1/2 activation coltrols cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175

    Article  Google Scholar 

  44. Freeman AK, Morrison DK (2011) 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin Cell Dev Biol 22:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D (2016) Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 7:17492–17507

    PubMed  PubMed Central  Google Scholar 

  46. Wei L, Zhu S, Wang J, Liu J (2012) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway during porcine circovirus type 2 infection facilitates cell survival and viral replication. J Virol 86:13589–13597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fort M, Fernandes LT, Nofrarias M, Díaz I, Sibila M, Pujols J, Mateu E, Segalés J (2009) Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Vet Immunol Immunopathol 129(1–2):101–107

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J (2007) Yin and yang interplay of IFN-gamma in inflammation and autoimmune disease. J Clin Invest 117(4):871–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  CAS  PubMed  Google Scholar 

  50. Abel K, La Franco-Scheuch L, Rourke T, Ma ZM, De Silva V, Fallert B, Beckett L, Reinhart TA, Miller CJ (2004) Gamma interferon-mediated inflammation is associated with lack of protection from intravaginal simian immunodeficiency virus SIVmac239 challenge in simian-human immunodeficiency virus 89.6-immunized rhesus macaques. J Virol 78(2):841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rose CD, Neven B, Wouters C (2014) Granulomatous inflammation: the overlap of immune deficiency and inflammation. Best Pract Res Clin Rheumatol 28(2):191–212

    Article  PubMed  Google Scholar 

  52. Segalés J, Rosell C, Domingo M (2004) Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol 98(2):137–149

    Article  CAS  PubMed  Google Scholar 

  53. Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19(10):514–522

    Article  CAS  PubMed  Google Scholar 

  54. Meng XJ (2013) Porcine circovirus type 2 (PCV2): Pathogenesis and interaction with immune system. Annu Rev Anim Biosci 1:43–64

    Article  CAS  PubMed  Google Scholar 

  55. Cheng S, Zhang M, Li W, Wang Y, Liu Y, He Q (2012) Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J Proteom 75:3258–3269

    Article  CAS  Google Scholar 

  56. Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M (2012) Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals protein and pathway regulation in porcine circovirus type 2 infected PK-15 cells. J Proteome Res 11:995–1008

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y (2009) Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 8:5111–5119

    Article  CAS  PubMed  Google Scholar 

  58. Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ (2009) Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 139:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Prem S. Paul and Dr. Igor Morozov for providing the plasmid p31/31, Prof. Dr. XJ Meng for the gift of PCV-free PK-15 cells, and Ms. Vasinee Srisombundit for technical assistance. This study was supported by the Thailand Research Fund (grant number RSA55080036), the Kasetsart University Research and Development Institute (KURDI) (grant number MoWo33.55), and in part by a grant funded under the program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral Degree from the Office of the Higher Education Commission, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Porntippa Lekcharoensuk.

Ethics declarations

Conflict of interest

Pattama Mutthi declares that she has no conflict of interest. Sirin Theerawatanasirikul declares that she has no conflict of interest. Sittiruk Roytrakul declares that he has no conflict of interest. Atchara Paemanee declares that she has no conflict of interest. Chalermpol Lekcharoensuk declares that he has no conflict of interest. Payuda Hansoongnern declares that she has no conflict of interest. Nantawan Petcharat declares that she has no conflict of interest. Nattarat Thangthamniyom declares that he has no conflict of interest. Porntippa Lekcharoensuk declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Roman Pogranichniy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutthi, P., Theerawatanasirikul, S., Roytrakul, S. et al. Interferon gamma induces cellular protein alteration and increases replication of porcine circovirus type 2 in PK-15 cells. Arch Virol 163, 2947–2957 (2018). https://doi.org/10.1007/s00705-018-3944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3944-1

Navigation