Skip to main content

Advertisement

Log in

Evaluation of INOS, ICAM-1, and VCAM-1 gene expression: A study of adult T cell leukemia malignancy associated with HTLV-1

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2017

Abstract

The main aim of this study was to evaluate the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and inducible nitric oxide synthase (iNOS) as host factors, and proviral load as the viral parameter, in adult T-cell leukemia/lymphoma (ATLL) individuals and healthy carrier (HC(s)) groups. Peripheral blood mononuclear cells (PBMC) from ATLL patients (n = 17) and HC subjects (as the control group, n = 17) were evaluated using real-time PCR to determine the levels of HTLV-1 proviral load and mRNA expression of ICAM, VCAM-1, and iNOS. ICAM-1 was significantly lower in ATLL patients than in control subjects. Although the expression of VCAM-1 was higher in ATLL individuals, there was no significant difference between the studied groups. In addition, no iNOS expression was found in ATLL patients, when compared to the HCs subjects, while ATLL patients demonstrated a higher level of proviral load when compared to the control group. Considering the importance of ICAM-1 in facilitating immune recognition of infected cells, it is posited that reduction of ICAM-1 expression is a unique strategy for circumventing appropriate immune responses that are mediated by different accessory proteins. Additionally, as the viral regulatory protein Tax and the NF-κB pathway play pivotal roles in expression of iNOS, lack of the latter in ATLL patients may be related to the level of Tax expression, disruption of the NF-κB pathway, or the occurrence of epigenetical mechanisms in the human iNOS promoter. Further studies are recommended to gain a better understanding of the interaction between host and viral factors in HTLV-1 pathogenesis and to identify a possible therapeutic target for ATLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangham CR (2000) HTLV-1 infections. J Clin Pathol 53(8):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satou Y, Matsuoka M (2012) Molecular and cellular mechanism of leukemogenesis of ATL: emergent evidence of a significant role for HBZ in HTLV-1-induced pathogenesis. Leuk Res Treat 2012:213653. doi:10.1155/2012/213653

    Google Scholar 

  3. Morales-Sanchez A, Fuentes-Panana EM (2014) Human viruses and cancer. Viruses 6(10):4047–4079. doi:10.3390/v6104047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Journo C, Mahieux R (2011) HTLV-1 and innate immunity. Viruses 3(8):1374–1394. doi:10.3390/v3081374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muhleisen A, Giaisi M, Kohler R, Krammer PH, Li-Weber M (2014) Tax contributes apoptosis resistance to HTLV-1-infected T cells via suppression of Bid and Bim expression. Cell Death Dis 5:e1575. doi:10.1038/cddis.2014.536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wycuff DR, Marriott SJ (2005) The HTLV-I Tax oncoprotein: hyper-tasking at the molecular level. Front Biosci J Virtual Libr 10:620–642

    Article  CAS  Google Scholar 

  7. Kannian P, Green PL (2010) Human T lymphotropic virus type 1 (HTLV-1): molecular biology and oncogenesis. Viruses 2(9):2037–2077. doi:10.3390/v2092037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arnold J, Yamamoto B, Li M, Phipps AJ, Younis I, Lairmore MD, Green PL (2006) Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 107(10):3976–3982. doi:10.1182/blood-2005-11-4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao T, Matsuoka M (2012) HBZ and its roles in HTLV-1 oncogenesis. Front Microbiol 3:247. doi:10.3389/fmicb.2012.00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ilinskaya A, Derse D, Hill S, Princler G, Heidecker G (2013) Cell-cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction. Virology 436(1):201–209. doi:10.1016/j.virol.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  11. Ishitsuka K, Tamura K (2014) Human T-cell leukaemia virus type I and adult T-cell leukaemia-lymphoma. Lancet Oncol 15(11):e517–e526. doi:10.1016/S1470-2045(14)70202-5

    Article  CAS  PubMed  Google Scholar 

  12. Valentin H, Hamaia S, Konig S, Gazzolo L (2001) Vascular cell adhesion molecule-1 induced by human T-cell leukaemia virus type 1 Tax protein in T-cells stimulates proliferation of human T-lymphocytes. J Gener Virol 82(Pt 4):831–835. doi:10.1099/0022-1317-82-4-831

    Article  CAS  Google Scholar 

  13. Yu Z, Kuncewicz T, Dubinsky WP, Kone BC (2006) Nitric oxide-dependent negative feedback of PARP-1 trans-activation of the inducible nitric-oxide synthase gene. J Biol Chem 281(14):9101–9109. doi:10.1074/jbc.M511049200

    Article  CAS  PubMed  Google Scholar 

  14. Baydoun HH, Cherian MA, Green P, Ratner L (2015) Inducible nitric oxide synthase mediates DNA double strand breaks in human T-Cell leukemia virus type 1-induced leukemia/lymphoma. Retrovirology 12:71. doi:10.1186/s12977-015-0196-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Molteni CG, Principi N, Esposito S (2014) Reactive oxygen and nitrogen species during viral infections. Free Rad Res 48(10):1163–1169. doi:10.3109/10715762.2014.945443

    Article  CAS  Google Scholar 

  16. Kolb JP (2000) Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia 14(9):1685–1694

    Article  CAS  PubMed  Google Scholar 

  17. Farid Hosseni R, Jabbari F, Shabestari M, Rezaee SA, Gharivani Y, Valizadeh N, Sobhani M, Moghiman T, Mozayani F (2013) Human T lymphotropic virus type I (HTLV-I) is a risk factor for coronary artery disease. Iran J Basic Med Sci 16(3):217–220

    PubMed  PubMed Central  Google Scholar 

  18. Kchour G, Tarhini M, Kooshyar MM, El Hajj H, Wattel E, Mahmoudi M, Hatoum H, Rahimi H, Maleki M, Rafatpanah H, Rezaee SA, Yazdi MT, Shirdel A, de The H, Hermine O, Farid R, Bazarbachi A (2009) Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 113(26):6528–6532. doi:10.1182/blood-2009-03-211821

    Article  CAS  PubMed  Google Scholar 

  19. Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S (2001) Increased activated human T cell lymphotropic virus type I (HTLV-I) Ta11–19-specific memory and effector CD8+ cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J Infect Dis 183(2):197–205. doi:10.1086/317932

    Article  CAS  PubMed  Google Scholar 

  20. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, Osame M (1998) Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4(6):586–593

    Article  CAS  PubMed  Google Scholar 

  21. Rafatpanah H, Rezaee A, Etemadi MM, Hosseini RF, Khorram B, Afsahr L, Taylor G, Mokhber N, Mahmoudi M, Abbaszadegan MR, Foroghipor M, Hashemi P, Amiri A, Tehrani M, Azarpazhooh A, Azarpazhooh MR (2012) The impact of interferon-alpha treatment on clinical and immunovirological aspects of HTLV-1-associated myelopathy in northeast of Iran. J Neuroimmunol 250(1–2):87–93. doi:10.1016/j.jneuroim.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  22. Fazeli B, Rafatpanah H, Ravari H, Farid Hosseini R, Tavakol Afshari J, Hamidi Alamdari D, Valizadeh N, Moheghi N, Rezaee SA (2014) Sera of patients with thromboangiitis obliterans activated cultured human umbilical vein endothelial cells (HUVECs) and changed their adhesive properties. Int J Rheum Dis 17(1):106–112. doi:10.1111/1756-185X.12214

    Article  CAS  PubMed  Google Scholar 

  23. Fazeli B, Rafatpanah H, Ravari H, Hosseini RF, Rezaee SA (2014) Investigation of the expression of mediators of neovascularization from mononuclear leukocytes in thromboangiitis obliterans. Vascular 22(3):174–180. doi:10.1177/1708538113477068

    Article  CAS  PubMed  Google Scholar 

  24. Desdouits M, Cassar O, Maisonobe T, Desrames A, Aouba A, Hermine O, Mikol J, Polivka M, Penisson-Besnier I, Marcorelles P, Zagnoli F, Papo T, Lacour A, Amoura Z, Haroche J, Cherin P, Teixeira A, Benveniste O, Herson S, Morin AS, Mortreux F, Wattel E, Huerre M, Cumont MC, Martin-Latil S, Butler-Browne G, Gout O, Taylor G, Gessain A, Ozden S, Ceccaldi PE (2013) HTLV-1-associated inflammatory myopathies: low proviral load and moderate inflammation in 13 patients from West Indies and West Africa. J Clin Virol Off Publ Pan Am Soc Clin Virol 57(1):70–76. doi:10.1016/j.jcv.2012.12.016

    Article  Google Scholar 

  25. Vakili R, Sabet F, Aahmadi S, Boostani R, Rafatpanah H, Shamsian A, Rezaee SA (2013) Human T-lymphotropic virus type I (HTLV-I) proviral load and clinical features in Iranian HAM/TSP patients: comparison of HTLV-I proviral load in HAM/TSP patients. Iran J Basic Med Sci 16(3):268–272

    PubMed  PubMed Central  Google Scholar 

  26. Akbarin MM, Rahimi H, Hassannia T, Shoja Razavi G, Sabet F, Shirdel A (2013) Comparison of HTLV-I proviral load in adult T cell leukemia/lymphoma (ATL), HTLV-I-associated myelopathy (HAM-TSP) and healthy carriers. Iran J Basic Med Sci 16(3):208–212

    PubMed  PubMed Central  Google Scholar 

  27. Nakayama Y, Ishikawa C, Tamaki K, Senba M, Fujita J, Mori N (2011) Interleukin-1 alpha produced by human T-cell leukaemia virus type I-infected T cells induces intercellular adhesion molecule-1 expression on lung epithelial cells. J Med Microbiol 60(Pt 12):1750–1761. doi:10.1099/jmm.0.033456-0

    Article  CAS  PubMed  Google Scholar 

  28. Valentin H, Lemasson I, Hamaia S, Casse H, Konig S, Devaux C, Gazzolo L (1997) Transcriptional activation of the vascular cell adhesion molecule-1 gene in T lymphocytes expressing human T-cell leukemia virus type 1 Tax protein. J Virol 71(11):8522–8530

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Teruya H, Tomita M, Senba M, Ishikawa C, Tamayose M, Miyazato A, Yara S, Tanaka Y, Iwakura Y, Fujita J, Mori N (2008) Human T-cell leukemia virus type I infects human lung epithelial cells and induces gene expression of cytokines, chemokines and cell adhesion molecules. Retrovirology 5:86. doi:10.1186/1742-4690-5-86

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kress AK, Grassmann R, Fleckenstein B (2011) Cell surface markers in HTLV-1 pathogenesis. Viruses 3(8):1439–1459. doi:10.3390/v3081439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nejmeddine M, Negi VS, Mukherjee S, Tanaka Y, Orth K, Taylor GP, Bangham CR (2009) HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. Blood 114(5):1016–1025. doi:10.1182/blood-2008-03-136770

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka Y, Hayashi M, Takagi S, Yoshie O (1996) Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses. J Virol 70(12):8508–8517

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7(4):270–280. doi:10.1038/nrc2111

    Article  CAS  PubMed  Google Scholar 

  34. Rosadas C, Puccioni-Sohler M (2015) HTLV-1 ORF-I encoded proteins and the regulation of host immune response: viral induced dysregulation of intracellular signaling. J Immunol Res 2015:498054. doi:10.1155/2015/498054

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goto H, Nakamura T, Shirabe S, Ueki Y, Nishiura Y, Furuya T, Tsujino A, Nakane S, Eguchi K, Nagataki S (1997) Up-regulation of iNOS mRNA expression and increased production of NO in human monoblast cell line, U937 transfected by HTLV-I tax gene. Immunobiology 197(5):513–521

    Article  CAS  PubMed  Google Scholar 

  36. Lavorgna A, Harhaj EW (2014) Regulation of HTLV-1 tax stability, cellular trafficking and NF-kappaB activation by the ubiquitin-proteasome pathway. Viruses 6(10):3925–3943. doi:10.3390/v6103925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee CH, Jeon YT, Kim SH, Song YS (2007) NF-kappaB as a potential molecular target for cancer therapy. BioFactors 29(1):19–35

    Article  CAS  PubMed  Google Scholar 

  38. Sonoki T, Matsuzaki H, Nagasaki A, Hata H, Yoshida M, Matsuoka M, Kuribayashi N, Kimura T, Harada N, Takatsuki K, Mitsuya H, Mori M (1999) Detection of inducible nitric oxide synthase (iNOS) mRNA by RT-PCR in ATL patients and HTLV-I infected cell lines: clinical features and apoptosis by NOS inhibitor. Leukemia 13(5):713–718

    Article  CAS  PubMed  Google Scholar 

  39. Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274(5294):1917–1921

    Article  CAS  PubMed  Google Scholar 

  40. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 23(2):75–93. doi:10.1016/j.niox.2010.04.007

    Article  CAS  Google Scholar 

  41. Fabisiewicz A, Pacholewicz K, Paszkiewicz-Kozik E, Walewski J, Siedlecki JA (2013) Polymorphisms of DNA repair and oxidative stress genes in B-cell lymphoma patients. Biomed Rep 1(1):151–155. doi:10.3892/br.2012.31

    CAS  PubMed  Google Scholar 

  42. Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann FE, Philibert RA, Milhem MM, Monick MM (2014) Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192(5):2326–2338. doi:10.4049/jimmunol.1301758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors appreciate Mrs. Sheri Lynn jalalian as an English expert for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Norouzi.

Ethics declarations

Funding

This project was financially supported by Mashhad University of Medical Sciences, Iran

Competing interests

None declared.

Ethical approval

This study was approved by the Ethics Committees of Medical Sciences Research at Mashhad University of Medical Sciences, Iran.

Additional information

M. Jafarian and S.-H. Mozhgani are co-first authors and contributed equally to this article.

The original version of this article was revised: One of the author name “Mohammad Mehdi Akbarin” in the authorship was incorrectly published in this original version and the same is corrected here.

An erratum to this article is available at http://dx.doi.org/10.1007/s00705-017-3272-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarian, M., Mozhgani, SH., Patrad, E. et al. Evaluation of INOS, ICAM-1, and VCAM-1 gene expression: A study of adult T cell leukemia malignancy associated with HTLV-1. Arch Virol 162, 1009–1015 (2017). https://doi.org/10.1007/s00705-016-3213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3213-0

Keywords

Navigation