Skip to main content

Advertisement

Log in

Gene expression study of host-human T-cell leukaemia virus type 1 (HTLV-1) interactions: adult T-cell leukaemia/lymphoma (ATLL)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In HTLV-1-associated malignant disease, adult T-cell leukaemia/lymphoma (ATLL), the interaction of virus and host was evaluated at the chemokines gene expression level. Also, IL-1β and Caspase-1 expressions were evaluated to investigate the importance of pyroptosis in disease development and progression.

Methods and results

The expression of host CCR6 and CXCR-3 and the HTLV-1 proviral load (PVL), Tax, and HBZ were assessed in 17 HTLV-1 asymptomatic carriers (ACs) and 12 ATLL patients using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), TaqMan method. Moreover, RT-qPCR, SYBR Green assay were performed to measure Caspase-1 and IL-1β expression. HTLV-1-Tax did not express in 91.5% of the ATLLs, while HBZ was expressed in all ATLLs. The expression of CXCR3 dramatically decreased in ATLLs compared to ACs (p = 0.001). The expression of CCR6 was lower in ATLLs than ACs (p = 0.04). The mean of PVL in ATLL patients was statistically higher than ACs (p = 0.001). Furthermore, the expression of the IL-1β between ATLLs and ACs was not statistically significant (p = 0.4). In contrast, there was a meaningful difference between Caspase-1 in ATLLs and ACs (p = 0.02).

Conclusions

The present study indicated that in the first stage of ATLL malignancy toward acute lymphomatous, CXCR3 and its progression phase may target the pyroptosis process. Mainly, HBZ expression could be a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data supporting this study’s findings are included in the manuscript and available from the corresponding author upon reasonable request.

References

  1. Gessain A, Cassar O (2012) Epidemiological aspects and World distribution of HTLV-1 infection. Front Microbiol 3:388. https://doi.org/10.3389/fmicb.2012.00388

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmadi Ghezeldasht S, Shirdel A, Assarehzadegan MA, Hassannia T, Rahimi H, Miri R et al (2013) Human T lymphotropic virus type I (HTLV-I) oncogenesis: molecular aspects of virus and host interactions in pathogenesis of adult T cell Leukemia/Lymphoma (ATL). Iran J Basic Med Sci 16(3):179–195

    PubMed  PubMed Central  Google Scholar 

  3. Mota TM, Jones RB (2019) HTLV-1 as a model for virus and host coordinated immunoediting. Front Immunol 10:2259. https://doi.org/10.3389/fimmu.2019.02259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemoine FJ, Wycuff DR, Marriott SJ (2001) Transcriptional activity of HTLV-I Tax influences the expression of marker genes associated with cellular transformation. Dis Markers 17(3):129–137. https://doi.org/10.1155/2001/263567

    Article  CAS  PubMed  Google Scholar 

  5. Saito M, Matsuzaki T, Satou Y, Yasunaga J, Saito K, Arimura K et al (2009) In vivo, expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 6:19. https://doi.org/10.1186/1742-4690-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, Rezaee SA (2023) Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukaemia/lymphoma (ATLL). Critical Reviews in Clinical Laboratory Sciences. :1–23. https://doi.org/10.1080/10408363.2022.2157791

  7. Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defence and immunity. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  8. Tang P, Wang JM (2018) Chemokines: the past, the present and the future. Cell Mol Immunol 15(4):295–298. https://doi.org/10.1038/cmi.2018.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clark-Lewis I, Mattioli I, Gong J-H, Loetscher P (2003) Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 278(1):289–295. https://doi.org/10.1074/jbc.M209470200

    Article  CAS  PubMed  Google Scholar 

  10. Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C et al (2019) The role of CXCR3 in neurological Diseases. Curr Neuropharmacol 17(2):142–150. https://doi.org/10.2174/1570159x15666171109161140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J et al (2014) CBTRUS statistical report: primary brain and central nervous system tumours diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–63. https://doi.org/10.1093/neuonc/nou223

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rafatpanah H, Felegari M, Azarpazhooh MR, Vakili R, Rajaei T, Hampson I et al (2017) Altered expression of CXCR3 and CCR6 and their ligands in HTLV-1 carriers and HAM/TSP patients. J Med Virol 89(8):1461–1468. https://doi.org/10.1002/jmv.24779

    Article  CAS  PubMed  Google Scholar 

  13. Hashikawa K, Yasumoto S, Nakashima K, Arakawa F, Kiyasu J, Kimura Y et al (2014) Microarray analysis of gene expression by the microdissected epidermis and dermis in mycosis fungoides and adult T-cell leukaemia/lymphoma. Int J Oncol 45(3):1200–1208. https://doi.org/10.3892/ijo.2014.2524

    Article  CAS  PubMed  Google Scholar 

  14. Naito T, Yasunaga JI, Mitobe Y, Shirai K, Sejima H, Ushirogawa H et al (2018) Distinct gene expression signatures induced by viral transactivators of different HTLV-1 subgroups that confer a different risk of HAM/TSP. Retrovirology 15(1):72. https://doi.org/10.1186/s12977-018-0454-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181(12):8391–8401

    Article  CAS  PubMed  Google Scholar 

  16. Heo YJ, Choi S-E, Lee N, Jeon JY, Han SJ, Kim DJ et al (2020) CCL20 induced by visfatin in macrophages via the NF-κB and MKK3/6-p38 signalling pathways contributes to hepatic stellate cell activation. Mol Biol Rep 47(6):4285–4293. https://doi.org/10.1007/s11033-020-05510-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frick VO, Rubie C, Keilholz U, Ghadjar P (2016) Chemokine/chemokine receptor pair CCL20/CCR6 in human colorectal malignancy: an overview. World J Gastroenterol 22(2):833–841. https://doi.org/10.3748/wjg.v22.i2.833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I (2020) CC chemokines in a tumour: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci 21(20):7619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106. https://doi.org/10.1038/nature07623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related Inflamm Nat 454(7203):436–444

    CAS  Google Scholar 

  21. Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T et al (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi J, Gao W, Shao F, Pyroptosis (2017) Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  23. Hu Y, Wang B, Li S, Yang S (2022) Pyroptosis, and its role in central nervous system disease. J Mol Biol 434(4):167379

    Article  CAS  PubMed  Google Scholar 

  24. Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K et al (2022) Cell pyroptosis in health and inflammatory diseases. Cell death discovery 8(1):191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derakhshan R, Mirhosseini A, Ahmadi Ghezeldasht S, Jahantigh HR, Mohareri M, Boostani R et al (2020) Abnormal vitamin D and lipid profile in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Mol Biol Rep 47(1):631–637. https://doi.org/10.1007/s11033-019-05171-1

    Article  CAS  PubMed  Google Scholar 

  26. Ma G, Yasunaga J, Matsuoka M (2016) Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 13:16. https://doi.org/10.1186/s12977-016-0249-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akbarin MM, Shirdel A, Bari A, Mohaddes ST, Rafatpanah H, Karimani EG et al (2017) Evaluation of the role of TAX, HBZ, and HTLV-1 proviral load on the survival of ATLL patients. Blood Res 52(2):106. https://doi.org/10.5045/br.2017.52.2.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Satou Y, Matsuoka M (2012) Molecular and Cellular Mechanisms of Leukemogenesis of ATL: Emergent evidence of a significant role for HBZ in HTLV-1-Induced Pathogenesis. Leuk Res Treatment 2012:213653. https://doi.org/10.1155/2012/213653

    Article  CAS  PubMed  Google Scholar 

  29. Yamada K, Miyoshi H, Yoshida N, Shimono J, Sato K, Nakashima K et al (2021) Human T-cell lymphotropic virus HBZ and tax mRNA expression are associated with specific clinicopathological features in adult T-cell leukaemia/lymphoma. Mod Pathol 34(2):314–326. https://doi.org/10.1038/s41379-020-00654-0

    Article  CAS  PubMed  Google Scholar 

  30. Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M et al (2021) The HTLV-1 viral oncoproteins tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 17(9):e1009919. https://doi.org/10.1371/journal.ppat.1009919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi N, Konishi H, Sabe H, Shigesada K, Noma T, Honjo T et al (1984) Genomic structure of HTLV (human T-cell leukaemia virus): detection of the defective genome and its amplification in MT-2 cells. Embo j 3(6):1339–1343. https://doi.org/10.1002/j.1460-2075.1984.tb01974.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S et al (2018) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation–a target for novel cancer therapy. Cancer Treat Rev 63:40–47

    Article  CAS  PubMed  Google Scholar 

  33. Lane BR, King SR, Bock PJ, Strieter RM, Coffey MJ, Markovitz DM (2003) The CXC chemokine IP-10 stimulates HIV-1 replication. Virology 307(1):122–134

    Article  CAS  PubMed  Google Scholar 

  34. Zeremski M, Dimova R, Brown Q, Jacobson IM, Markatou M, Talal AH (2009) Peripheral CXCR3-associated chemokines as biomarkers of fibrosis in chronic hepatitis C virus infection. J Infect Dis 200(11):1774–1780

    Article  CAS  PubMed  Google Scholar 

  35. Kawada K, Hosogi H, Sonoshita M, Sakashita H, Manabe T, Shimahara Y et al (2007) Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26(32):4679–4688

    Article  CAS  PubMed  Google Scholar 

  36. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. https://doi.org/10.1038/nrmicro2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514. https://doi.org/10.1038/nature12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y et al (2020) Pyroptosis: a new frontier in cancer. Biomed Pharmacother 121:109595

    Article  CAS  PubMed  Google Scholar 

  39. van Montfoort N, Olagnier D, Hiscott J (2014) Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 25(6):657–668. https://doi.org/10.1016/j.cytogfr.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  40. Chu Q, Jiang Y, Zhang W, Xu C, Du W, Tuguzbaeva G et al (2016) Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget 7(51):84658–84665. https://doi.org/10.18632/oncotarget.12384

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X et al (2014) Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest 94(1):52–62. https://doi.org/10.1038/labinvest.2013.126

    Article  CAS  PubMed  Google Scholar 

  42. Sun Y, Guo Y (2018) Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion. Oncol Lett 15(5):6431–6435. https://doi.org/10.3892/ol.2018.8176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107(50):21635–21640. https://doi.org/10.1073/pnas.1016814108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The results described in this paper were part of the student thesis. This study was subjected to MSc thesis in Medical Hematology and Medical Virology by M. Rahimzada and M. Nahavandi, respectively. The authors greatly thank the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences, Mashhad, Iran, for financially supporting the present study. We also are grateful to our kind colleagues in Immunology Research Center, Inflammation and Inflammatory Diseases Division, for their valuable help and great appreciation to the ATLL patients and ACs participating in this study.

Funding

This study was financially supported by the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences, Mashhad, Iran, under Grants [MUMS 971184 and MUMS 981133, recipient: SAR. Rezaee].

Author information

Authors and Affiliations

Authors

Contributions

Doing experiments: MR, MN and MS; Manuscript drafting and editing: AS, AM, NA and SAG; Research advisors: HS and NV; Research director, conception and design of the study; data analysis: SAR and MD. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Seyed Abdolrahim Rezaee or Mohammad Derakhshan.

Ethics declarations

Competing interests

The authors declare no conflicts of interest regarding this manuscript in other regions.

Ethics approval/Consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. The study was reviewed and approved by the Biomedical Research Ethics Committee of the Mashhad University of Medical Sciences [IR.MUMS.REC.971184 and IR.MUMS.REC.981133]. The written informed consent forms were obtained and signed by all the participants. All methods were performed following relevant guidelines and regulations.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Nahavandi and M. Saffari are co-first authors of this manuscript and have equal credit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimzada, M., Nahavandi, M., Saffari, M. et al. Gene expression study of host-human T-cell leukaemia virus type 1 (HTLV-1) interactions: adult T-cell leukaemia/lymphoma (ATLL). Mol Biol Rep 50, 7479–7487 (2023). https://doi.org/10.1007/s11033-023-08626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08626-8

Keywords

Navigation