Skip to main content
Log in

Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome (PRRS) is a leading cause of economic burden to the pork industry worldwide. The routinely used modified live PRRS virus vaccine (PRRS-MLV) induces clinical protection, but it has safety concerns. Therefore, in an attempt to develop a safe and protective inactivated PRRSV vaccine, we generated PRRS-virus-like-particles (PRRS-VLPs) containing the viral surface proteins GP5-GP4-GP3-GP2a-M or GP5-M using a novel baculovirus expression system. Our in vitro results indicated that the desired PRRSV proteins were incorporated in both the VLPs preparations based on their reactivity in immunogold electron microscopy and ELISA. To boost their immunogenicity in pigs, we entrapped the PRRS-VLPs in PLGA nanoparticles and coadministered them intranasally with a potent adjuvant. We then evaluated their efficacy in pigs against a viral challenge using a virulent heterologous field isolate. Our results indicated that PRRS-VLPs induced an anamnestic immune response, since we observed boosted IgG and IFN-γ production in vaccinated and virus-challenged animals, but not during the pre-challenge period. Importantly, a two-log reduction in the lung viral load was detected in PRRS-VLP-vaccinated animals. In conclusion, we generated PRRS-VLPs containing up to five viral surface proteins and demonstrated their immunogenicity in pigs, but further studies are required to improve its immunogenicity and efficacy as a vaccine candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arcos J, Sasindran SJ, Fujiwara N, Turner J, Schlesinger LS, Torrelles JB (2011) Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Torrelles JB, Renukaradhya GJ (2014) An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination. Int J Nanomedicine 9:1519–1535

    PubMed  PubMed Central  Google Scholar 

  3. Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ (2014) Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 9:679–694

    PubMed  PubMed Central  Google Scholar 

  4. Botner A, Strandbygaard B, Sorensen KJ, Have P, Madsen KG, Madsen ES, Alexandersen S (1997) Appearance of acute PRRS-like symptoms in sow herds after vaccination with a modified live PRRS vaccine. Vet Rec 141:497–499

    Article  CAS  PubMed  Google Scholar 

  5. Burgara-Estrella A, Diaz I, Rodriguez-Gomez IM, Essler SE, Hernandez J, Mateu E (2013) Predicted peptides from non-structural proteins of porcine reproductive and respiratory syndrome virus are able to induce IFN-gamma and IL-10. Viruses 5:663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calzada-Nova G, Schnitzlein WM, Husmann RJ, Zuckermann FA (2011) North American porcine reproductive and respiratory syndrome viruses inhibit type I interferon production by plasmacytoid dendritic cells. J Virol 85:2703–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calzada-Nova G, Husmann RJ, Schnitzlein WM, Zuckermann FA (2012) Effect of the host cell line on the vaccine efficacy of an attenuated porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 148:116–125

    Article  CAS  PubMed  Google Scholar 

  8. Casal JI (1999) Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem 29(Pt 2):141–150

    CAS  PubMed  Google Scholar 

  9. Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6:381–390

    Article  CAS  PubMed  Google Scholar 

  10. Christopher-Hennings J, Holler LD, Benfield DA, Nelson EA (2001) Detection and duration of porcine reproductive and respiratory syndrome virus in semen, serum, peripheral blood mononuclear cells, and tissues from Yorkshire, Hampshire, and Landrace boars. J Vet Diagn Invest 13:133–142

    Article  CAS  PubMed  Google Scholar 

  11. Das P, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6:e1000899

    Article  PubMed  PubMed Central  Google Scholar 

  12. Das PB, Dinh PX, Ansari IH, de Lima M, Osorio FA, Pattnaik AK (2010) The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163. J Virol 84:1731–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Lima M, Ansari IH, Das PB, Ku BJ, Martinez-Lobo FJ, Pattnaik AK, Osorio FA (2009) GP3 is a structural component of the PRRSV type II (US) virion. Virology 390:31–36

    Article  PubMed  Google Scholar 

  14. Deml L, Speth C, Dierich MP, Wolf H, Wagner R (2005) Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 42:259–277

    Article  CAS  PubMed  Google Scholar 

  15. Du Y, Qi J, Lu Y, Wu J, Yoo D, Liu X, Zhang X, Li J, Sun W, Cong X, Shi J, Wang J (2012) Evaluation of a DNA vaccine candidate co-expressing GP3 and GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) with interferon alpha/gamma in immediate and long-lasting protection against HP-PRRSV challenge. Virus Genes 45:474–487

    Article  CAS  PubMed  Google Scholar 

  16. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ (2011) Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058–4066

    Article  CAS  PubMed  Google Scholar 

  17. Dwivedi V, Manickam C, Binjawadagi B, Joyappa D, Renukaradhya GJ (2012) Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs. PLoS One 7:e51794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldmann C, Petry H, Frye S, Ast O, Ebitsch S, Jentsch KD, Kaup FJ, Weber F, Trebst C, Nisslein T, Hunsmann G, Weber T, Luke W (1999) Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. J Virol 73:4465–4469

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Grgacic EV, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40:60–65

    Article  CAS  PubMed  Google Scholar 

  20. Han MG, Wang Q, Smiley JR, Chang KO, Saif LJ (2005) Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses. J Clin Microbiol 43:778–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holtkamp D, Kliebenstein J (2011) PRRS costs industry $664 million annually. Pork Checkoff Study. http://www.pork.org/News/1265/PRRSCostsIndustry664Million.aspx

  22. Jackwood DJ (2013) Multivalent virus-like-particle vaccine protects against classic and variant infectious bursal disease viruses. Avian Dis 57:41–50

    Article  PubMed  Google Scholar 

  23. Jeong HJ, Song YJ, Lee SW, Lee JB, Park SY, Song CS, Ha GW, Oh JS, Oh YK, Choi IS (2010) Comparative measurement of cell-mediated immune responses of swine to the M and N proteins of porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol 17:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim WI, Lee DS, Johnson W, Roof M, Cha SH, Yoon KJ (2007) Effect of genotypic and biotypic differences among PRRS viruses on the serologic assessment of pigs for virus infection. Vet Microbiol 123:1–14

    Article  CAS  PubMed  Google Scholar 

  25. Li G, Shi N, Suo S, Cui J, Zarlenga D, Ren X (2012) Vaccination of mice with ORF5 plasmid DNA of PRRSV; enhanced effects by co-immunizing with porcine IL-15. Immunol Invest 41:231–248

    Article  CAS  PubMed  Google Scholar 

  26. Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58:739–747

    Article  CAS  PubMed  Google Scholar 

  27. Manocha M, Pal PC, Chitralekha KT, Thomas BE, Tripathi V, Gupta SD, Paranjape R, Kulkarni S, Rao DN (2005) Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine 23:5599–5617

    Article  CAS  PubMed  Google Scholar 

  28. Mardassi H, Massie B, Dea S (1996) Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 221:98–112

    Article  CAS  PubMed  Google Scholar 

  29. Margine I, Martinez-Gil L, Chou YY, Krammer F (2012) Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS One 7:e51559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper WM, Wensvoort G (1995) Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206:155–163

    Article  CAS  PubMed  Google Scholar 

  31. Murata K, Lechmann M, Qiao M, Gunji T, Alter HJ, Liang TJ (2003) Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci USA 100:6753–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS (2013) Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 158:1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nielsen HS, Oleksiewicz MB, Forsberg R, Stadejek T, Botner A, Storgaard T (2001) Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. J Gen Virol 82:1263–1272

    Article  CAS  PubMed  Google Scholar 

  34. Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444

    Article  CAS  PubMed  Google Scholar 

  35. Oleksiewicz MB, Botner A, Toft P, Normann P, Storgaard T (2001) Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 75:3277–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parida R, Choi IS, Peterson DA, Pattnaik AK, Laegreid W, Zuckermann FA, Osorio FA (2012) Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res 169:13–21

    Article  CAS  PubMed  Google Scholar 

  37. Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VG, Lo DD (2010) Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 285:23739–23746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Renukaradhya GJ, Alekseev K, Jung K, Fang Y, Saif LJ (2010) Porcine reproductive and respiratory syndrome virus-induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunol 23:457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM (2015) Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: current status and future direction. Vaccine 33:3065–3072

    Article  CAS  PubMed  Google Scholar 

  40. Schirmbeck R, Bohm W, Reimann J (1996) Virus-like particles induce MHC class I-restricted T-cell responses. Lessons learned from the hepatitis B small surface antigen. Intervirology 39:111–119

    CAS  PubMed  Google Scholar 

  41. Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79(Pt 5):961–979

    Article  CAS  PubMed  Google Scholar 

  42. Snijder EJ, Kikkert M, Fang Y (2013) Arterivirus molecular biology and pathogenesis. J Gen Virol 94:2141–2163

    Article  CAS  PubMed  Google Scholar 

  43. Subramaniam S, Pineyro P, Tian D, Overend C, Yugo DM, Matzinger SR, Rogers AJ, Haac ME, Cao Q, Heffron CL, Catanzaro N, Kenney SP, Huang YW, Opriessnig T, Meng XJ (2014) In vivo targeting of porcine reproductive and respiratory syndrome virus antigen through porcine DC-SIGN to dendritic cells elicits antigen-specific CD4T cell immunity in pigs. Vaccine 32:6768–6775

    Article  CAS  PubMed  Google Scholar 

  44. Takayama K, Schnoes HK, Armstrong EL, Boyle RW (1975) Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res 16:308–317

    CAS  PubMed  Google Scholar 

  45. Van Breedam W, Van Gorp H, Zhang JQ, Crocker PR, Delputte PL, Nauwynck HJ (2010) The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog 6:e1000730

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Oers MM (2011) Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107(Suppl):S3–15

    Article  PubMed  Google Scholar 

  47. Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107(Suppl):S42–S48

    Article  CAS  PubMed  Google Scholar 

  48. Wang W, Chen X, Xue C, Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H, Cao Y (2012) Production and immunogenicity of chimeric virus-like particles containing porcine reproductive and respiratory syndrome virus GP5 protein. Vaccine 30:7072–7077

    Article  CAS  PubMed  Google Scholar 

  49. Wissink EH, Kroese MV, van Wijk HA, Rijsewijk FA, Meulenberg JJ, Rottier PJ (2005) Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J Virol 79:12495–12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu WH, Fang Y, Rowland RR, Lawson SR, Christopher-Hennings J, Yoon KJ, Nelson EA (2005) The 2b protein as a minor structural component of PRRSV. Virus Res 114:177–181

    Article  CAS  PubMed  Google Scholar 

  51. Xue C, Wang W, Liu Q, Miao Z, Liu K, Shen H, Lv L, Li X, Chen X, Cao Y (2014) Chimeric influenza-virus-like particles containing the porcine reproductive and respiratory syndrome virus GP5 protein and the influenza virus HA and M1 proteins. Arch Virol 159:3043–3051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Quihong Wang for help in generating rBVs and VLPs. Drs. Fernando Osorio and Asit Patnaik (University of Nebraska Lincoln) and Mike Murtaugh (University of Minnesota) provided PRRSV reagents. Dr. Juliette Hanson provided help in animal studies. Mr. Suren R Gourapura edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourapura J. Renukaradhya.

Ethics declarations

This study was funded by a National Pork Board (NPB# 09-213) award to GJR. Salaries and research support were provided by state and federal funds appropriated to OARDC.

Conflict of interest

All the authors declare no conflict of interest.

Ethics statement

This study was carried out in strict accordance with the recommendations of Public Health Service Policy, United States Department of Agriculture Regulations, the National Research Council’s Guide for the Care and Use of Laboratory Animals, and the Federation of Animal Science Societies’ Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching; as well as all relevant institutional, state, and federal regulations and policies regarding animal care and use at The Ohio State University. The protocol was approved by the Committee on the Ethics of Animal Experiments of The Ohio State University (Protocol Number: 2012A00000109). During maintenance of pigs, sample collection, and euthanasia, all efforts were made to minimize suffering of pigs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binjawadagi, B., Lakshmanappa, Y.S., Longchao, Z. et al. Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 161, 1579–1589 (2016). https://doi.org/10.1007/s00705-016-2812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2812-0

Keywords

Navigation