Skip to main content

Advertisement

Log in

Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) induces reproductive failure in sows and respiratory problems in pigs of all ages. Live attenuated and inactivated vaccines are used on swine farms to control PRRSV. However, their protective efficacy against field strains of PRRSV remains questionable. New vaccines have been developed to improve the efficacy of these traditional vaccines. In this study, virus-like particles (VLPs) composed of the GP5 and M proteins of PRRSV were developed, and the capacity of the VLPs to elicit antigen-specific immunity was evaluated. Serum antibody titers and production of cytokines were measured in BALB/C mice immunized intramuscularly three times with different doses (0.5, 1.0, 2.0, and 4.0 μg) of the VLP vaccine. A commercial vaccine consisting of inactivated PRRSV and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. IgG titers to GP5 were significantly higher in all groups of mice vaccinated with the VLPs than in control mice. Neutralizing antibodies were only detected in mice vaccinated with 2.0 and 4.0 μg of the VLPs. Cytokine levels were determined in cell culture supernatants after in vitro stimulation of splenocytes with the VLPs for 3 days. Mice immunized with 4.0 μg of the VLPs produced a significantly higher amount of interferon-gamma (IFN-γ) than mice immunized with the commercial inactivated PRRSV vaccine and PBS. In contrast, immunization with the commercial vaccine induced higher production of IL-4 and IL-10 in mice than mice vaccinated with VLPs. These data together demonstrate the capacity of VLPs to induce both neutralizing antibodies and IFN-γ in immunized mice. The VLP vaccine developed in this study could serve as a platform for the generation of improved VLP vaccines to control PRRSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227:385–392

    Article  PubMed  Google Scholar 

  2. Conzelmann KK, Visser N, Van Woensel P, Thiel HJ (1993) Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 193:329–339

    Article  PubMed  CAS  Google Scholar 

  3. Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ (1993) Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192:62–72

    Article  PubMed  CAS  Google Scholar 

  4. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 13:121–130

    Article  PubMed  CAS  Google Scholar 

  5. Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4:117–126

    Article  PubMed  CAS  Google Scholar 

  6. Terpstra C, Wensvoort G, Pol JM (1991) Experimental reproduction of porcine epidemic abortion and respiratory syndrome (mystery swine disease) by infection with Lelystad virus: Koch’s postulates fulfilled. Vet Q 13:131–136

    Article  PubMed  CAS  Google Scholar 

  7. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA (1999) North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 80:307–315

    PubMed  CAS  Google Scholar 

  8. Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280

    PubMed  CAS  Google Scholar 

  9. Meulenberg JJ, Petersen den Besten A, de Kluyver E, van Nieuwstadt A, Wensvoort G, Moormann RJ (1997) Molecular characterization of Lelystad virus. Vet Microbiol 55:197–202

    Article  PubMed  CAS  Google Scholar 

  10. Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, Nelson EA (2001) A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287:183–191

    Article  PubMed  CAS  Google Scholar 

  11. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107–1116

    Article  PubMed  CAS  Google Scholar 

  12. Mardassi H, Massie B, Dea S (1996) Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 221:98–112

    Article  PubMed  CAS  Google Scholar 

  13. Wissink EH, Kroese MV, van Wijk HA, Rijsewijk FA, Meulenberg JJ, Rottier PJ (2005) Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J Virol 79:12495–12506

    Article  PubMed  CAS  Google Scholar 

  14. Pirzadeh B, Dea S (1998) Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. J Gen Virol 79:989–999

    PubMed  CAS  Google Scholar 

  15. Gonin P, Pirzadeh B, Gagnon CA, Dea S (1999) Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein. J Vet Diagn Invest 11:20–26

    Article  PubMed  CAS  Google Scholar 

  16. Weiland E, Wieczorek-Krohmer M, Kohl D, Conzelmann KK, Weiland F (1999) Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Vet Microbiol 66:171–186

    Article  PubMed  CAS  Google Scholar 

  17. Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB (2002) Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparin like receptor on porcine alveolar macrophages. J Virol 76:4312–4320

    Article  PubMed  CAS  Google Scholar 

  18. Van Breedam W, Van Gorp H, Zhang JQ, Crocker PR, Delputte PL, Nauwynck HJ (2010) The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog 6:e1000730

    Article  PubMed  Google Scholar 

  19. Jiang Y, Xiao S, Fang L, Yu X, Song Y, Niu C, Chen H (2006) DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine 24:2869–2879

    Article  PubMed  CAS  Google Scholar 

  20. Zheng Q, Chen D, Li P, Bi Z, Cao R, Zhou B, Chen P (2007) Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 35:585–595

    Article  PubMed  CAS  Google Scholar 

  21. Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Osorio FA (2002) Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine 21:21–29

    Article  PubMed  CAS  Google Scholar 

  22. Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S (2006) Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Vet Immunol Immunopathol 113:169–180

    Article  PubMed  CAS  Google Scholar 

  23. Wang S, Fang L, Fan H, Jiang Y, Pan Y, Luo R, Zhao Q, Chen H, Xiao S (2007) Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 25:8220–8227

    Article  PubMed  CAS  Google Scholar 

  24. Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR (2010) The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Vet Microbiol 146:189–199

    Article  PubMed  CAS  Google Scholar 

  25. Scortti M, Prieto C, Alvarez E, Simarro I, Castro JM (2007) Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV. Vet Rec 161:809–813

    PubMed  CAS  Google Scholar 

  26. Kim H, Kim HK, Jung JH, Choi YJ, Kim J, Um CG, Hyun SB, Shin S, Lee B, Jang G, Kang BK, Moon HJ, Song DS (2011) The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods. Virol J 8:323

    Article  PubMed  Google Scholar 

  27. Zuckermann FA, Garcia EA, Luque ID, Christopher-Hennings J, Doster A, Brito M, Osorio F (2007) Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge. Vet Microbiol 123:69–85

    Article  PubMed  CAS  Google Scholar 

  28. Linhares DC, Cano JP, Wetzell T, Nerem J, Torremorell M, Dee SA (2012) Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. Vaccine 30:407–413

    Article  PubMed  CAS  Google Scholar 

  29. Labarque G, Reeth KV, Nauwynck H, Drexler C, Van Gucht S, Pensaert M (2004) Impact of genetic diversity of European-type porcine reproductive and respiratory syndrome virus strains on vaccine efficacy. Vaccine 22:4183–4190

    Article  PubMed  CAS  Google Scholar 

  30. Han K, Seo HW, Shin JH, Oh Y, Kang I, Park C, Chae C (2011) Effect of the modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on European and North American PRRSV shedding in semen from infected boars. Clin Vaccine Immunol 18:1600–1607

    Article  PubMed  CAS  Google Scholar 

  31. Martelli P, Gozio S, Ferrari L, Rosina S, De Angelis E, Quintavalla C, Bottarelli E, Borghetti P (2009) Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field strain: clinical protection and cell-mediated immunity. Vaccine 27:3788–3799

    Article  PubMed  CAS  Google Scholar 

  32. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS (2011) Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058–4066

    Article  PubMed  CAS  Google Scholar 

  33. Meng XJ (2000) Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbiol 74:309–329

    Article  PubMed  CAS  Google Scholar 

  34. Prieto C, Alvarez E, Martinez-Lobo FJ, Simarro I, Castro JM (2008) Similarity of European porcine reproductive and respiratory syndrome virus strains to vaccine strain is not necessarily predictive of the degree of protective immunity conferred. Vet J 175:356–363

    Article  PubMed  CAS  Google Scholar 

  35. Murtaugh MP, Genzow M (2011) Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 29:8192–8204

    Article  PubMed  Google Scholar 

  36. Madsen KG, Hansen CM, Madsen ES, Strandbygaard B, Botner A, Sorensen KJ (1998) Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Arch Virol 143:1683–1700

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen HS, Oleksiewicz MB, Forsberg R, Stadejek T, Botner A, Storgaard T (2001) Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. J Gen Virol 82:1263–1272

    PubMed  CAS  Google Scholar 

  38. Ludwig C, Wagner R (2007) Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol 18:537–545

    Article  PubMed  CAS  Google Scholar 

  39. Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176

    Article  PubMed  CAS  Google Scholar 

  40. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR (1984) Human hepatitis B vaccine from recombinant yeast. Nature 307:178–180

    Article  PubMed  CAS  Google Scholar 

  41. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184

    Article  PubMed  CAS  Google Scholar 

  42. Lee DH, Park JK, Lee YN, Song JM, Kang SM, Lee JB, Park SY, Choi IS, Song CS (2011) H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine 29:4003–4007

    Article  PubMed  CAS  Google Scholar 

  43. Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK (2011) Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 157:1–12

    Article  PubMed  CAS  Google Scholar 

  44. Kirkegaard T, Wheatley A, Melchjorsen J, Bahrami S, Pedersen FS, Center RJ, Purcell DF, Ostergaard L, Duch T, Tolstrup M (2011) Induction of humoral and cellular immune responses against the HIV-1 envelope protein using gamma-retroviral virus-like particles. Virol J 8:381

    Article  PubMed  CAS  Google Scholar 

  45. Pegu P, Helmus R, Gupta P, Tarwater P, Caruso L, Shen C, Ross T, Chen Y (2011) Induction of strong anti-HIV cellular immunity by a combination of Clostridium perfringens expressing HIV gag and virus like particles. Curr HIV Res 9:613–622

    Article  PubMed  CAS  Google Scholar 

  46. Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107:S42–S48

    Article  PubMed  CAS  Google Scholar 

  47. Kurstak E, Tijssen P, Kurstak C, Morisset R (1986) Enzyme immunoassays and related procedures in diagnostic medical virology. Bull World Health Organ 64:465–479

    PubMed  CAS  Google Scholar 

  48. Sasagawa T, Pushko P, Steers G, Gschmeissner SE, Hajibagheri MA, Finch J, Crawford L, Tommasino M (1995) Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology 206:126–135

    Article  PubMed  CAS  Google Scholar 

  49. Assad S, Francis A (1999) Over a decade of experience with a yeast recombinant hepatitis B vaccine. Vaccine 18:57–67

    Article  PubMed  CAS  Google Scholar 

  50. Haupt RM, Sings HL (2011) The efficacy and safety of the quadrivalent human papillomavirus 6/11/16/18 vaccine gardasil. J Adolesc Health 49:467–475

    Article  PubMed  Google Scholar 

  51. Wieringa R, de Vries AA, van der Meulen J, Godeke GJ, Onderwater JJ, van Tol H, Koerten HK, Mommaas AM, Snijder EJ, Rottier PJ (2004) Structural protein requirements in equine arteritis virus assembly. J Virol 78:13019–13027

    Article  PubMed  CAS  Google Scholar 

  52. Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, Massare M, Pushko P, Mytle N, Rowe T, Smith G, Ross TM (2007) Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25:3871–3878

    Article  PubMed  CAS  Google Scholar 

  53. Wagner R, Fliessbach H, Wanner G, Motz M, Niedrig M, Deby G, von Brunn A, Wolf H (1992) Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Arch Virol 127:117–137

    Article  PubMed  CAS  Google Scholar 

  54. Molina RM, Cha SH, Chittick W, Lawson S, Murtaugh MP, Nelson EA, Christopher-Hennings J, Yoon KJ, Evans R, Rowland RR, Wu WH, Zimmerman JJ (2008) Immune response against porcine reproductive and respiratory syndrome virus during acute and chronic infection. Vet Immunol Immunopathol 126:283–292

    Article  PubMed  CAS  Google Scholar 

  55. Lopez OJ, Oliveira MF, Garcia EA, Kwon BJ, Doster A, Osorio FA (2007) Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent. Clin Vaccine Immunol 14:269–275

    Article  PubMed  CAS  Google Scholar 

  56. Schirmbeck R, Bohm W, Reimann J (1996) Virus-like particles induce MHC class I-restricted T-cell responses. Lessons learned from the hepatitis B small surface antigen. Intervirology 39:111–119

    PubMed  CAS  Google Scholar 

  57. Tsunetsugu-Yokota Y, Morikawa Y, Isogai M, Kawana-Tachikawa A, Odawara T, Nakamura T, Grassi F, Autran B, Iwamoto A (2003) Yeast-derived human immunodeficiency virus type 1 p55(gag) virus-like particles activate dendritic cells (DCs) and induce perforin expression in Gag-specific CD8(+) T cells by cross-presentation of DCs. J Virol 77:10250–10259

    Article  PubMed  CAS  Google Scholar 

  58. García-Piñeres A, Hildesheim A, Dodd L, Kemp TJ, Williams M, Harro C, Lowy DR, Schiller JT, Pinto LA (2007) Cytokine and chemokine profiles following vaccination with human papillomavirus type 16 L1 Virus-like particles. Clin Vaccine Immunol 14:984–989

    Article  PubMed  Google Scholar 

  59. Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355

    PubMed  CAS  Google Scholar 

  60. Song H, Wittman V, Byers A, Tapia T, Zhou B, Warren W, Heaton P, Connolly K (2010) In vitro stimulation of human influenza-specific CD8+ T cells by dendritic cells pulsed with an influenza virus-like particle (VLP) vaccine. Vaccine 28:5524–5532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. H. Sur (Konkuk University, Korea) for providing monoclonal antibody SDOW17. This study was supported by funds provided from Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET), Brain Korea 21, KBNP Inc., and Veterinary Science Research Institute, Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Soo Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, HM., Chae, KS., Song, YJ. et al. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 158, 1275–1285 (2013). https://doi.org/10.1007/s00705-013-1612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1612-z

Keywords

Navigation