Skip to main content
Log in

Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas-Castillo J (2011) Geminiviridae. In: King AMQ, Adamas MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 356–374

    Google Scholar 

  2. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151–161

    Article  CAS  PubMed  Google Scholar 

  3. Albuquerque LC, Inoue-Nagata AK, Pinheiro B, Ribeiro Sda G, Resende RO, Moriones E, Navas-Castillo J (2011) A novel monopartite begomovirus infecting sweet potato in Brazil. Arch Virol 156:1291–1294

    Article  CAS  PubMed  Google Scholar 

  4. Briddon RW, Stanley J (2006) Subviral agents associated with plant single stranded DNA viruses. Virology 344:198–210

    Article  CAS  PubMed  Google Scholar 

  5. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832

    Article  CAS  PubMed  Google Scholar 

  6. Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    Article  CAS  PubMed  Google Scholar 

  7. Stanley J (2004) Subviral DNAs associated with geminivirus disease complexes. Vet Microbiol 98:121–129

    Article  CAS  PubMed  Google Scholar 

  8. Saeed M, Behjatnia SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14

    Article  CAS  PubMed  Google Scholar 

  9. Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon RW, Stanley J, Markham PG (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199

    Article  CAS  PubMed  Google Scholar 

  10. Mansoor S, Amin I, Hussain M, Zafar Y, Bull S, Briddon RW, Markham PG (2001) Association of a disease complex involving a begomovirus, DNA 1 and a distinct DNA beta with leaf curl disease of okra in Pakistan. Plant Dis 85:922

    Article  Google Scholar 

  11. Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152

    Article  CAS  PubMed  Google Scholar 

  12. Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11:209–212

    Article  CAS  PubMed  Google Scholar 

  13. Briddon RW (2003) Cotton leaf curl disease, a multicomponent begomovirus complex. Mol Plant Pathol 4:427–434

    Article  CAS  PubMed  Google Scholar 

  14. Mansoor S, Briddon RW, Bull SE, Bedford ID, Bashir A, Hussain M, Saeed M, Zafar Y, Malik KA, Fauquet C, Markham PG (2003) Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA beta. Arch Virol 148:1969–1986

    Article  CAS  PubMed  Google Scholar 

  15. Farooq A, Farooq J, Mahmood A, Shakeel A, Rehman A, Batool A, Riaz M, Shahid MTH, Mehboob S (2011) An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. Aus J Crop Sci 5:1823–1831

    CAS  Google Scholar 

  16. Briddon RW, Akbar F, Iqbal Z, Amrao L, Amin I, Saeed M, Mansoor S (2014) Effects of genetic changes to the begomovirus/betasatellite complex causing cotton leaf curl disease in South Asia post-resistance breaking. Virus Res 186:114–119

    Article  CAS  PubMed  Google Scholar 

  17. Sattar MN, Kvarnheden A, Saeed M, Briddon RW (2013) Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 94:695–710

    Article  CAS  PubMed  Google Scholar 

  18. Amrao L, Amin I, Shahid MS, Briddon RW, Mansoor S (2010) Cotton leaf curl disease in resistant cotton is associated with a single begomovirus that lacks an intact transcriptional activator protein. Virus Res 152:153–163

    Article  CAS  PubMed  Google Scholar 

  19. Akbar F, Briddon RW, Vazquez F, Saeed M (2012) Transcript mapping of Cotton leaf curl Burewala virus and its cognate betasatellite, Cotton leaf curl Multan betasatellite. Virol J 9:249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rajagopalan PA, Naik A, Katturi P, Kurulekar M, Kankanallu RS, Anandalakshmi R (2012) Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch Virol 157:855–868

    Article  CAS  PubMed  Google Scholar 

  21. Chakraborty S, Vanitharani R, Chattopadhyay B, Fauquet CM (2008) Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of begomovirus associated with severe tomato leaf curl disease in India. J Gen Virol 89:818–828

    Article  CAS  PubMed  Google Scholar 

  22. Hou YM, Gilbertson RL (1996) Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70:5430–5436

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD (1997) Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111

    CAS  PubMed  Google Scholar 

  24. Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649

    Article  CAS  PubMed  Google Scholar 

  25. Kumar J, Gunapati S, Singh SP, Kumar A, Lalit A, Sharma NC, Puranik R, Tuli R (2013) A new betasatellite associated with Cotton leaf curl Burewala virus infecting tomato in India: influence on symptoms and viral accumulation. Arch Virol 158:1349–1353

    Article  CAS  PubMed  Google Scholar 

  26. Kumar J, Kumar A, Roy JK, Tuli R, Khan JA (2010) Identification and molecular characterization of begomovirus and associated satellite DNA molecules infecting Cyamopsis tetragonoloba. Virus Genes 41:118–125

    Article  CAS  PubMed  Google Scholar 

  27. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 88:7093–7104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kumar J, Gunapati S, Kumar J, Kumari A, Kumar A, Tuli R, Singh SP (2014) Virus-induced gene silencing using a modified betasatellite: a potential candidate for functional genomics of crops. Arch Virol 159:2109–2113

    Article  CAS  PubMed  Google Scholar 

  31. Manzoor MT, Ilyas M, Shafiq M, Haider MS, Shahid AA, Briddon RW (2014) A distinct strain of chickpea chlorotic dwarf virus (genus Mastrevirus, family Geminiviridae) identified in cotton plants affected by leaf curl disease. Arch Virol 159:1217–1221

    Article  CAS  PubMed  Google Scholar 

  32. Mubin M, Mansoor S, Briddon RW (2012) Mastrevirus sequences in a begomovirus-infected plant. Virus Genes 44:536–538

    Article  PubMed  Google Scholar 

  33. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  34. Van Wezel R, Liu H, Tien P, Stanley J, Hong Y (2001) Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol Plant Microbe Interact 14:1125–1128

    Article  PubMed  Google Scholar 

  35. Wartig L, Kheyr-Pour A, Noris E, de Kouchovsky F, Jouanneau F, Gronenborn B, Jupin I (1997) Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2, and C2 ORFs in viral pathogenesis. Virology 228:132–140

    Article  CAS  PubMed  Google Scholar 

  36. Baliji S, Sunter J, Sunter G (2007) Transcriptional analysis of complementary-sense genes in Spinach curly top virus and functional role of C2 in pathogenesis. Mol Plant Microbe Interact 20:194–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology, Government of India, for support. JK and SG are thankful to CSIR for providing a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Kumar or Sudhir P. Singh.

Additional information

J. Kumar and S. Gunapati contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Gunapati, S., Alok, A. et al. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease. Arch Virol 160, 1219–1228 (2015). https://doi.org/10.1007/s00705-015-2384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2384-4

Keywords

Navigation