Skip to main content
Log in

DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Eukaryotic ssDNA viruses encode a rolling-circle replication (RCR) initiation protein, Rep, which binds to iterated DNA elements functioning as essential elements for virus-specific replication. By using the iterons of all known circoviruses, nanoviruses and nanovirus-like satellites as heuristic devices, we have identified certain amino acid residues that presumably determine the DNA-binding specificity of their Rep proteins. These putative “specificity determinants” (SPDs) cluster in two discrete protein regions, which are adjacent to distinct conserved motifs. A comparable distribution of SPDs was uncovered in the Rep protein of geminiviruses. Modeling of the tertiary structure of diverse Rep proteins showed that SPD regions interact to form a small β-sheet element that has been proposed to be critical for high-affinity DNA-binding of Rep. Our findings indicate that eukaryotic circular ssDNA viruses have a common ancestor and suggest that SPDs present in replication initiators from a huge variety of viral and plasmid RCR systems are associated with the same conserved motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  CAS  PubMed  Google Scholar 

  2. Arguello-Astorga GR, Ruiz-Medrano R (2001) An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146:465–485

    Google Scholar 

  3. Boer DR, Ruíz-Masó JA, López-Blanco JR, Blanco AG, Vives-Llàcer M, Chacón P, Usón I, Gomis-Rüth FX, Espinosa M, Llorca O, del Solar G, Coll M (2009) Plasmid replication initiator RepB forms a hexamer reminiscent of ring helicases and has mobile nuclease domains. EMBO J 28:1666–1678

    Article  CAS  PubMed  Google Scholar 

  4. Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324:462–474

    Article  CAS  PubMed  Google Scholar 

  5. Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210

    Article  CAS  PubMed  Google Scholar 

  6. Campos-Olivas R, Louis JM, Clerot D, Gronenborn B, Gronenborn AM (2002) The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci USA 99:10310–10315

    Article  CAS  PubMed  Google Scholar 

  7. Chatterji A, Padidam M, Beachy RN, Fauquet CM (1999) Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J Virol 73:5481–5489

    CAS  PubMed  Google Scholar 

  8. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W83

  9. Eisenberg S, Griffith J, Kornberg A (1977) ϕX174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci USA 74:3198–3202

    Article  CAS  PubMed  Google Scholar 

  10. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    Article  CAS  PubMed  Google Scholar 

  11. Faurez F, Dory D, Grasland B, Jestin A (2009) Replication of porcine circoviruses. Virol J 6:60

    Article  PubMed  Google Scholar 

  12. Gibbs MJ, Smeianov VV, Steele JL, Upcroft P, Efimov BA (2006) Two families of rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes. Mol Biol Evol 23:1097–1100

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs MJ, Weiller GF (1999) Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci USA 96:8022–8027

    Article  CAS  PubMed  Google Scholar 

  14. Gronenborn B (2004) Nanoviruses: genome organisation and protein function. Vet Microbiol 98:103–109

    Article  CAS  PubMed  Google Scholar 

  15. Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56(3–4):313–329

    Article  CAS  PubMed  Google Scholar 

  16. Halami MY, Nieper H, Müller H, Johne R (2008) Detection of a novel circovirus in mute swans (Cygnus olor) by using nested broad-spectrum PCR. Virus Res 132:208–212

    Article  CAS  PubMed  Google Scholar 

  17. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  18. Hattermann K, Schmitt C, Soike D, Mankertz A (2003) Cloning and sequencing of duck circovirus (DuCV). Arch Virol 148:2471–2480

    Article  CAS  PubMed  Google Scholar 

  19. Heath L, Martin DP, Warburton L, Perrin M, Horsfield W, Kingsley C, Rybicki EP, Williamson AL (2004) Evidence of unique genotypes of beak and feather disease virus in southern Africa. J Virol 78:9277–9284

    Article  CAS  PubMed  Google Scholar 

  20. Herrera-Valencia VA, Dugdale B, Harding RM, Dale JL (2006) An iterated sequence in the genome of Banana bunchy top virus is essential for efficient replication. J Gen Virol 87:3409–3412

    Article  CAS  PubMed  Google Scholar 

  21. Heyraud-Nitschke F, Schumacher S, Laufs J, Schaefer S, Schell J, Gronenborn B (1995) Determination of the origin cleavage and joining domain of geminivirus Rep proteins. Nucleic Acids Res 23:910–916

    Article  CAS  PubMed  Google Scholar 

  22. Horser CL, Karan M, Harding RM, Dale JL (2001) Additional rep-encoding DNAs associated with banana bunchy top virus. Arch Virol 146:71–86

    Article  CAS  PubMed  Google Scholar 

  23. Hughes AL (2004) Birth-and-death evolution of protein-coding regions and concerted evolution of non-coding regions in the multi-component genomes of nanoviruses. Mol Phylogenet Evol 30:287–294

    Article  CAS  PubMed  Google Scholar 

  24. Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279–3285

    Article  CAS  PubMed  Google Scholar 

  25. Jeske H, Lütgemeier M, Preiss W (2001) DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–6167

    Article  CAS  PubMed  Google Scholar 

  26. Johne R, Fernandez-de-Luco D, Hofle U, Muller H (2006) Genome of a novel circovirus of starlings, amplified by multiply primed rolling-circle amplification. J Gen Virol 87:1189–1195

    Article  CAS  PubMed  Google Scholar 

  27. Kagramanova VK, Derckacheva NI, Mankin AS (1988) The complete nucleotide sequence of the arcaebacterial plasmid pHSB from Halobacterium, strain SB3. Nucleic Acids Res 16:4158

    Article  CAS  PubMed  Google Scholar 

  28. Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455

    CAS  PubMed  Google Scholar 

  29. Khan SA (2005) Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53:126–136

    Article  CAS  PubMed  Google Scholar 

  30. Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73:2763–2766

    Article  CAS  PubMed  Google Scholar 

  31. Koonin EV, Ilyina TV (1993) Computer-assisted dissection of rolling circle DNA replication. Biosystems 30:241–268

    Article  CAS  PubMed  Google Scholar 

  32. Krupovic M, Ravantti JJ, Bamford DH (2009) Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol 9:112

    Article  PubMed  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  34. Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B (1995) In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA 92:3879–3883

    Article  CAS  PubMed  Google Scholar 

  35. Lin WL, Chien MS, Du YW, Wu PC, Huang C (2009) The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities. Biochem Biophys Res Commun 379:1066–1071

    Article  CAS  PubMed  Google Scholar 

  36. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767

    Article  CAS  PubMed  Google Scholar 

  37. Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P, Mueller B, Schmitt C, Steinfeldt T, Finsterbusch T (2004) Molecular biology of Porcine circovirus: analyses of gene expression and viral replication. Vet Microbiol 98:81–88

    Article  CAS  PubMed  Google Scholar 

  38. Mankertz A, Hattermann K, Ehlers B, Soike D (2001) Cloning and sequencing of columbid circovirus (CoCV), a new circovirus from pigeons. Arch Virol 145:2469–2479

    Article  Google Scholar 

  39. Mankertz A, Mueller B, Steinfeldt T, Schmitt C, Finsterbusch T (2003) New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2. J Virol 77:9885–9893

    Article  CAS  PubMed  Google Scholar 

  40. Moscoso M, del Solar G, Espinosa M (1995) Specific nicking-closing activity of the initiator of replication protein RepB of plasmid pMV158 on supercoiled or single-stranded DNA. J Biol Chem 270:3772–3779

    Article  CAS  PubMed  Google Scholar 

  41. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832

    Article  CAS  PubMed  Google Scholar 

  42. Niagro FD, Forsthoefel AN, Lawther RP, Kamalanathan L, Ritchie BW, Latimer KS, Lukert PD (1998) Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Arch Virol 143:1723–1744

    Article  CAS  PubMed  Google Scholar 

  43. Nishigawa H, Miyata S, Oshima K, Sawayanagi T, Komoto A, Kuboyama T, Matsuda I, Tsuchizaki T, Namba S (2001) In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147:507–513

    CAS  PubMed  Google Scholar 

  44. Oshima K, Kakizawa S, Nishigawa H, Kuboyama T, Miyata S, Ugaki M, Namba S (2001) A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285:270–277

    Article  CAS  PubMed  Google Scholar 

  45. Palmer KE, Rybicki EP (1998) The molecular biology of mastreviruses. Adv Virus Res 50:183–234

    Article  CAS  PubMed  Google Scholar 

  46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  47. Phenix KV, Weston JH, Ypelaar I, Lavazza A, Smyth JA, Todd D, Wilcox GE, Raidal SR (2001) Nucleotide sequence analysis of a novel circovirus of canaries and its relationship to other members of the genus Circovirus of the family Circoviridae. J Gen Virol 82:2805–2809

    CAS  PubMed  Google Scholar 

  48. Pietila MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319

    Article  CAS  PubMed  Google Scholar 

  49. Ramos PL, Guevara-González RG, Peral R, Ascencio-Ibañez JT, Polston JE, Argüello-Astorga GR, Vega-Arreguín JC, Rivera-Bustamante RF (2003) Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: implications for the delimitation of cis- and trans-acting replication specificity determinants. Arch Virol 148:1697–1712

    Article  CAS  PubMed  Google Scholar 

  50. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  51. Rosario K, Duffy S, Breitbart M (2009) Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 90:2418–2424

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz-Masó JA, Lurz R, Espinosa M, del Solar G (2007) Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication. Nucleic Acids Res 35:1230–1244

    Article  PubMed  Google Scholar 

  53. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  54. Sharman M, Thomas JE, Skabo S, Holton TA (2008) Abacá bunchy top virus, a new member of the genus Babuvirus (family Nanoviridae). Arch Virol 153:135–147

    Article  CAS  PubMed  Google Scholar 

  55. Singh DK, Malik PS, Choudhury NR, Mukherjee SK (2008) MYMIV replication initiator protein (Rep): roles at the initiation and elongation steps of MYMIV DNA replication. Virology 380:75–83

    Article  CAS  PubMed  Google Scholar 

  56. Steinfeldt T, Finsterbusch T, Mankertz A (2001) Rep and Rep’ protein of porcine circovirus type 1 bind to the origin of replication in vitro. Virology 291:152–160

    Article  CAS  PubMed  Google Scholar 

  57. Stewart ME, Perry R, Raidal SR (2006) Identification of a novel circovirus in Australian ravens (Corvus coronoides) with feather disease. Avian Pathol 35:86–92

    Article  CAS  PubMed  Google Scholar 

  58. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  59. Timchenko T, de Kouchkovsky F, Katul L, David C, Vetten HJ, Gronenborn B (1999) A single rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. J Virol 73:10173–10182

    CAS  PubMed  Google Scholar 

  60. Timchenko T, Katul L, Sano Y, de Kouchkovsky F, Vetten HJ, Gronenborn B (2000) The master rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology 274:189–195

    Article  CAS  PubMed  Google Scholar 

  61. Todd D, Scott AN, Fringuelli E, Shivraprasad HL, Gavier-Widen D, Smyth JA (2007) Molecular characterization of novel circoviruses from finch and gull. Avian Pathol 36:75–81

    Article  CAS  PubMed  Google Scholar 

  62. van Wezenbeek PM, Hulsebos TJ, Schoenmakers JG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11:129–148

    Article  PubMed  Google Scholar 

  63. Vega-Rocha S, Byeon IJ, Gronenborn B, Gronenborn AM, Campos-Olivas R (2007) Solution structure, divalent metal and DNA binding of the endonuclease domain from the replication initiation protein from porcine circovirus 2. J Mol Biol 367:473–487

    Article  CAS  PubMed  Google Scholar 

  64. Vega-Rocha S, Gronenborn B, Gronenborn AM, Campos-Olivas R (2007) Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 46:6201–6212

    Article  CAS  PubMed  Google Scholar 

  65. Zhou L, Zhou M, Sun C, Han J, Lu Q, Zhou J, Xiang H (2008) Precise determination, cross-recognition, and functional analysis of the double-strand origins of the rolling-circle replication plasmids in haloarchaea. J Bacteriol 190:5710–5719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Roberto Ruiz-Medrano (CINVESTAV, IPN), José Trinidad Ascencio-Ibañez (North Carolina State University) and Braulio Gutiérrez-Medina (IPICYT) for critical reading of the manuscript and many helpful suggestions. A.L. was supported by a fellowship from the Instituto Potosino de Investigación Científica y Tecnológica, A.C., and a PhD fellowship (211758) from CONACYT, Mexico. This research was supported by the Consejo Nacional de Ciencia y Tecnología, Mexico (grant no. 42639-Q to G.R.A.-A. and grant no. 49039 to L.R.-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo R. Argüello-Astorga.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Londoño, A., Riego-Ruiz, L. & Argüello-Astorga, G.R. DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Arch Virol 155, 1033–1046 (2010). https://doi.org/10.1007/s00705-010-0674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0674-4

Keywords

Navigation