Skip to main content

Advertisement

Log in

Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Newcastle disease virus (NDV) is an avian paramyxovirus that can selectively replicate in and destroy human tumor cells. In this report, we demonstrate that NDV infection in HeLa cells leads to the activation of the pattern recognition Toll-like receptor 3 (TLR3). Overexpression of TLR3 enhanced the activity of the IFN-β promoter and the transcription factor NF-kappa B (NF-κB), thereby decreasing viral protein synthesis and the virus titer. In addition, the reduction of endogenous TLR3 by small interfering RNA (siRNA) increased NDV replication. Similar anti-NDV effects were observed in DF-1 chicken fibroblast cells with the exogenous expression of chicken TLR3 (cTLR3). Immunofluorescence staining of HeLa cells indicated that the dsRNA generated during NDV replication colocalized with TLR3 in punctate subcellular structures. Altogether, our results strongly suggest that TLR3 actively participates in the recognition of the innate pro-inflammatory response after NDV infection and leads to the consequent antiviral cytokine/interferon secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexander D (1997) Newcastle disease and other avian Paramyxoviridae infections. In: Caineck BW (ed) Diseases of poultry. Iowa State University Press, Ames, pp 541–569

    Google Scholar 

  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  3. Boukhvalova MS, Sotomayor TB, Point RC, Pletneva LM, Prince GA, Blanco JC (2010) Activation of interferon response through toll-like receptor 3 impacts viral pathogenesis and pulmonary toll-like receptor expression during respiratory syncytial virus and influenza infections in the cotton rat Sigmodon hispidus model. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res 30:229–242

    Article  CAS  Google Scholar 

  4. Doyle SE, O’Connell R, Vaidya SA, Chow EK, Yee K, Cheng G (2003) Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor. J Immunol (Baltimore, Md: 1950) 170:3565–3571

    Article  CAS  Google Scholar 

  5. Fournier P, Wilden H, Schirrmacher V (2012) Importance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int J Oncol 40:287–298

    PubMed  CAS  Google Scholar 

  6. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science (New York, NY) 312:879–882

    Article  CAS  Google Scholar 

  7. Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364

    PubMed  CAS  Google Scholar 

  8. Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SL (2005) Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol 79:12273–12279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Isogawa M, Robek MD, Furuichi Y, Chisari FV (2005) Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 79:7269–7272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  11. Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X (2003) Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 278:16713–16719

    Article  PubMed  CAS  Google Scholar 

  12. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28

    Article  PubMed  CAS  Google Scholar 

  13. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

  14. Lamb RA, Griffin DE (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM (ed) Field virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496

  15. Lau YF, Tang LH, Ooi EE, Subbarao K (2010) Activation of the innate immune system provides broad-spectrum protection against influenza A viruses with pandemic potential in mice. Virology 406:80–87

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, Si-Tahar M (2007) Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368–3372

  17. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  18. Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X (2011) Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-beta in cultured hepatoma cells. PLoS One 6:e23346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Manuse MJ, Parks GD (2010) TLR3-dependent upregulation of RIG-I leads to enhanced cytokine production from cells infected with the parainfluenza virus SV5. Virology 397:231–241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev 60:805–812

    Article  PubMed  CAS  Google Scholar 

  21. Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Prehaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5:e1000315

    Article  PubMed  PubMed Central  Google Scholar 

  22. Naka K, Dansako H, Kobayashi N, Ikeda M, Kato N (2006) Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 346:348–362

    Article  PubMed  CAS  Google Scholar 

  23. Nelson CB, Pomeroy BS, Schrall K, Park WE, Lindeman RJ (1952) An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am J Public Health Nation’s Health 42:672–678

    Article  CAS  Google Scholar 

  24. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13:453–460

    Article  PubMed  Google Scholar 

  25. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167

    Article  PubMed  CAS  Google Scholar 

  26. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001

  27. Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E, von Messling V, Vidal SM (2013) Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog 9:e1003256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Romer-Oberdorfer A, Werner O, Veits J, Mebatsion T, Mettenleiter TC (2003) Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol 84:3121–3129

    Article  PubMed  Google Scholar 

  29. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  30. Seth RB, Sun L, Chen ZJ (2006) Antiviral innate immunity pathways. Cell Res 16:141–147

    Article  PubMed  CAS  Google Scholar 

  31. Sun Y, Ding N, Ding SS, Yu S, Meng C, Chen H, Qiu X, Zhang S, Yu Y, Zhan Y, Ding C (2013) Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Mol Immunol 53:321–327

    Article  PubMed  CAS  Google Scholar 

  32. Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy benefits the replication of newcastle disease virus in chicken cells and tissues. J Virol 88:525–537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  34. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  PubMed  CAS  Google Scholar 

  35. Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111–116

    Article  PubMed  CAS  Google Scholar 

  36. Trapp S, Derby NR, Singer R, Shaw A, Williams VG, Turville SG, Bess JW Jr, Lifson JD, Robbiani M (2009) Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 83:884–895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11:604–615

    Article  PubMed  CAS  Google Scholar 

  38. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  39. Wilson JR, de Sessions PF, Leon MA, Scholle F (2008) West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82:8262–8271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (New York, NY) 301:640–643

    Article  CAS  Google Scholar 

  41. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  42. Zamarin D, Palese P (2012) Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7:347–367

    Article  PubMed  CAS  Google Scholar 

  43. Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, Zhou D, Ho W (2010) A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology 131:40–49

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Takashi Fujita (Kyoto University, Japan) for providing the p125-luc plasmid. This work was financially supported by the Chinese National High-Tech R&D Program (2011AA10A209), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the China Agriculture Research System (CARS-41-K08), and the Chinese Special Fund for Agro-Scientific Research in the Public Interest (201003012 and 201303033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yantao Wu or Chan Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Sun, Y., Zhang, X. et al. Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Arch Virol 159, 2937–2948 (2014). https://doi.org/10.1007/s00705-014-2148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2148-6

Keywords

Navigation