Skip to main content
Log in

Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Two novel filamentous phages, phiSMA6 and phiSMA7, were isolated from Stenotrophomonas maltophilia environmental strain Khak84. We identified and annotated 11 potential open reading frames in each phage. While the overall layout of the functional gene groups of both phages was similar to that of the known filamentous phages, they differed from them in their molecular structure. The genome of phiSMA6 is a mosaic that evolved by acquiring genes from at least three different filamentous S. maltophilia phages and one Xanthomonas campestris phage related to Cf1. In the phiSMA6 genome, a gene similar to the bacterial gene encoding the mating pair formation protein trbP was also found. We showed that phiSMA6 possesses lysogenic properties and upon induction produces high-titer lysates. The genome of phiSMA7 possesses a unique structure and was found to be closely related to a prophage present in the chromosome of the completely sequenced S. maltophilia clinical strain D457. We suggest that the other three filamentous phages of S. maltophilia described previously also have the capacity to integrate into the genome of their bacterial host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marvin DA, Hohn B (1969) Filamentous bacterial viruses. Bacteriol Rev 33(2):172–209

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Tseng YH, Lo MC, Lin KC, Pan CC, Chang RY (1990) Characterization of filamentous bacteriophage phi Lf from Xanthomonas campestris pv. campestris. J Gen Virol 71:1881–1884

    Article  CAS  PubMed  Google Scholar 

  3. Lin NT, You BY, Huang CY, Kuo CW, Wen FS, Yang JS, Tseng YH (1994) Characterization of two novel filamentous phages of Xanthomonas. J Gen Virol 75(Pt 9):2543–2547

    Article  CAS  PubMed  Google Scholar 

  4. Campos J, Martınez E, Suzarte E, Rodrıguez BL, Marrero K, Silva Y, Ledo′n T, del Sol R, Fando R (2003) VGJΦ, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTXΦ. J Bacteriol 185:5685–5696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Campos J, Martínez E, Izquierdo Y, Fando R (2010) VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 156:108–115

    Article  CAS  PubMed  Google Scholar 

  6. Chopin MC, Rouault A, Ehrlich SD, Gautier M (2002) Filamentous phage active on the gram-positive bacterium Propionibacterium freudenreichii. J Bacteriol 184:2030–2033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Overman SA, Bondre P, Maiti NC, Thomas GJ Jr (2005) Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy. Biochemistry 44:3091–3100

    Article  CAS  PubMed  Google Scholar 

  8. Piekarowicz A, Majchrzak M, Kłyz A, Adamczyk-Popławska M (2006) Analysis of the filamentous bacteriophage genomes integrated into Neisseria gonorrhoeae FA1090 chromosome. Pol J Microbiol 55:251–260

    Article  CAS  PubMed  Google Scholar 

  9. Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T (2007) Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum. J Bacteriol 189:5792–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang F, Wang F, Li Q, Xiao X (2007) A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature. J Bacteriol 189:7151–7153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012) The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato. Phytopathology 102:244–251

    Article  PubMed  Google Scholar 

  13. Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 406:151–157

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER (2002) Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184:6050–6055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed Central  PubMed  Google Scholar 

  17. Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prévost MC, Médigue C, Hinnebusch BJ, Carniel E (2007) A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol 63:1145–1157

    Article  CAS  PubMed  Google Scholar 

  18. Chouikha I, Charrier L, Filali S, Derbise A, Carniel E (2010) Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 407:43–52

    Article  CAS  PubMed  Google Scholar 

  19. Faruque SM, Mekalanos JJ (2012) Phage-bacterial interaction in the evolution of toxigenic Vibrio cholerae. Virulence 3:556–565

    Article  PubMed Central  PubMed  Google Scholar 

  20. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270):1910–1914

    Article  CAS  PubMed  Google Scholar 

  21. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    Article  CAS  PubMed  Google Scholar 

  22. Hemminga MA, Vos WL, Nazarov PV, Koehorst RB, Wolfs CJ, Spruijt RB, Stopar D (2010) Viruses: incredible nanomachines. New advances with filamentous phages. Eur Biophys J 39:541–550

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations, applications and future. Biotechnol Adv 28:849–858

    Article  CAS  PubMed  Google Scholar 

  24. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13:51–76

    CAS  PubMed  Google Scholar 

  25. Muder RR, Harris AP, Muller S, Edmond M, Chow JW, Papadakis K, Wagener MW, Bodey GP, Steckelberg JM (1996) Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clin Infect Dis 22(3):508–512

    Article  CAS  PubMed  Google Scholar 

  26. Denton M, Todd NJ, Kerr KG, Hawkey PM, Littlewood JM (1998) Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J Clin Microbiol 36:1953–1958

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hauben L, Vauterin L, Moore ER, Hoste B, Swings J (1999) Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 49:1749–1760

    Article  CAS  PubMed  Google Scholar 

  28. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74

    Article  PubMed Central  PubMed  Google Scholar 

  29. Liu J, Liu Q, Shen P, Huang YP (2012) Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Arch Virol 157:1643–1650

    Article  CAS  PubMed  Google Scholar 

  30. Hagemann M, Hasse D, Berg G (2006) Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Arch Microbiol 185:449–458

    Article  CAS  PubMed  Google Scholar 

  31. Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB (1999) A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399(6734):375–379

    Article  CAS  PubMed  Google Scholar 

  32. Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory Manual, Volume 1, 2, 3. Cold Spring Harbour, Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  33. Faruque SM, Asadulghani, Kamruzzaman M, Nandi RK, Ghosh AN, Nair GB, Mekalanos JJ, Sack DA (2002) RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTXphi. Infect Immun 70(1):163–170

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158 Review

    Article  CAS  PubMed  Google Scholar 

  35. Frangione B, Nakashima Y, Konigsberg W, Wiseman RL (1978) The amino acid sequence of the major coat protein subunit of the filamentous virus Xf. FEBS Letters 96:381–384

    Article  CAS  PubMed  Google Scholar 

  36. Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A (2001) Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem 276:19160–19165

    Article  PubMed  Google Scholar 

  37. Iida T, Makino K, Nasu H, Yokoyama K, Tagomori K, Hattori A, Okuno T, Shinagawa H, Honda T (2002) Filamentous bacteriophages of vibrios are integrated into the dif-like site of the host chromosome. J Bacteriol 184:4933–4935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656–659

    Article  CAS  PubMed  Google Scholar 

  39. Askora A, Abdel-Haliem ME, Yamada T (2012) Site-specific recombination systems in filamentous phages. Mol Genet Genomics. 287:525–530

    Article  CAS  PubMed  Google Scholar 

  40. Loessner MJ, Gaeng S, Scherer S (1999) Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. J Bacteriol 181:4452–4460

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Rasched I, Oberer E (1986) Ff coliphages: Structural and functional relationships. Microbiol. Rev 50:401–427

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Yen MR, Lin NT, Hung CH, Choy KT, Weng SF, Tseng YH (2002) oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68:2924–2933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowlegements

We are grateful to I.A. Khmel (Institute of Molecular Genetics RAN, Laboratory of Regulation of Expression of Genes of Microorganisms) for kindly providing the 10 strains of Stenotrophomonas maltophilia. We also thank N.A. Khachikian for expert technical assistance. This work was partially supported by state contract #8129 from the Ministry of Education and Science of the Russian Federation and by the Russian Academy of Sciences Presidium Program “Molecular and Cellular Biology” (grant to A. Kulbachinsky).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Mindlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, M., Shcherbatova, N., Kurakov, A. et al. Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia . Arch Virol 159, 1293–1303 (2014). https://doi.org/10.1007/s00705-013-1882-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1882-5

Keywords

Navigation