Skip to main content

Advertisement

Log in

Detection of a Phage Genome Carrying a Zonula Occludens like Toxin Gene (zot) in clinical isolates of Stenotrophomonas maltophilia

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

During a study of the genetic diversity of Stenotrophomonas strains, we found an autonomous replicating DNA molecule in chromosomal DNA preparations of the clinical Stenotrophomonas maltophilia strain c5. The entire sequence of 6,907 bp of the isolated DNA molecule was determined, which was called φSMA9. Seven ORFs, which code for proteins with considerable similarity to proteins in databases, were identified in the DNA sequence. The largest ORF shows high sequence similarities to the pI protein of the filamentous phage φLf, which was later shown to be identical to toxin Zot of Vibrio cholerae. Beside the Zot-like protein, six other proteins with similarities to known phage proteins such as a phage replication protein RstA and phage absorption or coat protein are encoded on φSMA9, which indicate that this circular DNA molecule represents the replicative form of a linear phage genome. A PCR-based screening showed that only five from the totally investigated 47 Stenotrophomonas strains of clinical and environmental origin harbor these genes. Altogether, we describe the first genome of a phage for the nosocomial pathogen Stenotrophomonas, which contains a Zot toxin like gene and might be regarded as the first Stenotrophomonas virulence factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso A, Martinez JL (1997) Multiple resistances in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:140–1142

    Google Scholar 

  • Alonso A, Morales G, Escalante R, Campanario E, Sastre L, Martinez JL (2004) Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J Antimicrob Chemother 53:432–434

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from Lactic Streptococci. Appl Environ Microbiol 46:549–559

    PubMed  CAS  Google Scholar 

  • Berg G, Knaape C, Ballin G, Seidel D (1994) Biological control of Verticillium dahliae KLEB by naturally occurring rhizosphere bacteria. Arch Phytopathol Dis Prot 29:249–262

    Article  Google Scholar 

  • Berg G, Marten P, Ballin G (1996) Stenotrophomonas maltophilia in the rhizosphere of oilseed rape—occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27

    CAS  Google Scholar 

  • Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594–3600

    PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of RDX by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1813–1322

    Google Scholar 

  • Block A, Schmelz E, O’Donnell PJ, Jones JB, Klee HJ (2005). Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol 138:1481–1490

    Article  PubMed  CAS  Google Scholar 

  • Chang K-H, Wen F-S, Tseng T-T, Lin N-T, Yang M-T, Tseng YH (1998) Sequence analysis and expression of the filamentous phage phi LF gene I encoding a 48-kDa protein associated with host cell membranes. Biochem Biophys Res Commun 245:313–318

    Article  PubMed  CAS  Google Scholar 

  • Chang H-C, Chen C-R, Lin J-W, Shen G-H, Chang K-M, Tseng Y-H, Weng S-F (2005) Isolation and characterization of novel giant Stenotrophomonas phage φSMA5. Appl Environ Microbiol 71:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42

    Article  PubMed  CAS  Google Scholar 

  • Denton M, Kerr KG (1998) Microbiological and clinical aspects of infections associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11:7–80

    Google Scholar 

  • De Abreu Vidipó L, De Andrade Marques E, Puchelle E, Plotkowski MC (2001) Stenotrophomonas maltophilia interaction with human epithelial respiratory cells in vitro. Microbiol Immumol 45:563–569

    Google Scholar 

  • De Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz AC, Alcantaram N, Martinez MB, Giron JA (2003) Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol 5:625–636

    Article  PubMed  CAS  Google Scholar 

  • Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A (2001) Zonula occludens toxin structure-function analysis. J Biol Chem 276:19160–19166

    Article  PubMed  CAS  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, de Bruijn FJ, O´Gara F (2000) Overproduction of an inducile extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • Fasano A, Baudry B, Pumplim DW, Wasserman SS, Tall BD, Ketley JM, Kaper JB (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 88:5242–5246

    Article  PubMed  CAS  Google Scholar 

  • Fasano A, Florentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization in vitro. J Clin Invest 96:710–720

    Article  PubMed  CAS  Google Scholar 

  • Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov. sp. nov. Int J Syst Evol Microbiol 50:273–282

    PubMed  CAS  Google Scholar 

  • Gerner-Smidt P, Bruun B, Arpi M, Schmidt J (1995) Diversity of nosocomial Xanthomonas maltophilia (Stenotrophomonas maltophilia) as determined by ribotyping. Europ J Clin Microbiol Infect Dis 14:137–140

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Schoor A, Jeanjean R, Zuther E, Joset F (1997) The gene stpA from Synechocystis sp. strain PCC 6803 encodes for the glucosylglycerol-phosphate phosphatase involved in cyanobacterial salt adaptation. J Bacteriol 179:1717–1733

    Google Scholar 

  • Heipern AJ, Waldor MK (2003) pIIICTX, a predicted CTXφ minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185:1037–1044

    Article  CAS  Google Scholar 

  • Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656–659

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Suzuki K, Kaneko T, Komagata K (1980) Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int J Syst Bacteriol 30:437–447

    CAS  Google Scholar 

  • Jacobi M, Kaiser D, Berg G, Jung G, Winkelmann G, Bahl H (1996) Maltophilin—a new antifungal compound produced by Stenotrophomomas maltophilia R3089. J Antib 49:1101–1104

    Google Scholar 

  • Lin N-T, Liu T-J, Lee T-C, You B-Y, Yang M-H, Wen F-S, Tseng Y-H (1999) The adsorption protein genes of Xanthomonas campestris filamentous phages determining host specificity. J Bacteriol 181:2465–2471

    PubMed  CAS  Google Scholar 

  • Lin N-T, Chang R-Y, Lee S-J, Tseng Y-H (2001) Plasmids carrying cloned fragments of RF DNA from the filamentous phage φLF can be integrated into the host chromosome via site-specific integration and homologous recombination. Mol Genet Genomics 266:425–435

    Article  PubMed  CAS  Google Scholar 

  • McKay GA, Woods DE, MacDonald KL, Poole K (2003) Role of phosphoglucomutase of Stenotrophomonas malttophilia in lipopolysaccharide biosynthesis, virulence and antibiotic resistance. Infect Immun 71:3068–3075

    Article  PubMed  CAS  Google Scholar 

  • Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39:139–145

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mitzutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    PubMed  CAS  Google Scholar 

  • Palleroni NJ, Bradbury JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43: 606–609

    Article  PubMed  CAS  Google Scholar 

  • Rademaker JLW, De Bruijn FJ (1992) Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In: Caetano-Anollés G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. Wiley, New York

    Google Scholar 

  • Rivera IN, Chun J, Huo A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421–2429

    Article  PubMed  CAS  Google Scholar 

  • Schaumann R, Stein K, Eckardt C, Ackermann G, Rodloff AC (2001) Infections caused by Stenotrophomonas maltophilia—a prospective study. Infection 4:205–209

    Article  Google Scholar 

  • Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Gielen J, Barmeier H, Ratjen F (2005) Prospective evaluation of emerging bacteria in cystic fibrosis. J Cyst Fibros 4:41–48

    Article  PubMed  CAS  Google Scholar 

  • Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95:656–663

    Article  PubMed  CAS  Google Scholar 

  • Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944

    Article  CAS  Google Scholar 

  • Yang HC, Im WT, Kang MS, Shin DY, Lee ST (2006) Stenotrophomonas koreensis sp. nov. isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant of the DFG (Deutsche Forschungsgemeinschaft). Many thanks are to Dr. M. K. Walden, Tufts University, Boston, USA, for helpful discussion. We would like to thank the Sanger Institute and Wellcome Trust for making the S. maltophilia strain 279a genome sequence already available for the public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hagemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagemann, M., Hasse, D. & Berg, G. Detection of a Phage Genome Carrying a Zonula Occludens like Toxin Gene (zot) in clinical isolates of Stenotrophomonas maltophilia . Arch Microbiol 185, 449–458 (2006). https://doi.org/10.1007/s00203-006-0115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0115-7

Keywords

Navigation