Skip to main content

Advertisement

Log in

Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cotton leaf curl Multan betasatellite (CLCuMB) replicates in tobacco, tomato and datura plants in the presence of the helper viruses tomato leaf curl virus-Australia, Iranian isolates of tomato yellow leaf curl virus, tomato leaf curl Karnataka virus, and beet severe curly top virus (BSCTV). Infectious recombinant CLCuMB constructs were made in which segments of either the CaMV 35S or the petunia ChsA promoter replaced the CLCuMB βC1 ORF, and these were designated pBinβΔC1-35S and pBinβΔC1-ChsA, respectively. Inoculation of tobacco plants containing a functional 35S-GUS transgene with pBinβΔC1-35S, and normal petunia plants with pBinβΔC1-ChsA, in the presence of helper viruses resulted in silencing of GUS and ChsA activities in transgenic tobacco and non-transgenic petunia plants, respectively. Replication of CLCuMB with different geminiviruses, especially BSCTV, a curtovirus with a broad host range, makes it a valuable gene delivery vector to the large number of host plant species of geminiviruses that support CLCuMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Kaff NS, Kreike MM, Covey SN, Pitcher R, Page AM, Dale PJ (2000) Plants rendered herbicide susceptible by Cauliflower mosaic virus elicited suppression of a 35S promoter regulated transgene. Nat Biotechnol 18:995–999

    Article  PubMed  CAS  Google Scholar 

  2. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  3. Behjatnia SAA, Dry IB, Krake LR, Conde BD, Connelly MI, Randles JW, Rezaian MA (1996) New potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology 86:880–886

    Article  CAS  Google Scholar 

  4. Behjatnia SAA, Dry IB, Rezaian MA (2001) Sequence divergence in new strains of Tomato leaf curl virus resulting in replication specificity. Australas Plant Pathol 30:337–342

    Article  Google Scholar 

  5. Behjatnia SAA, Eini Gandomani O, Rasoulpour R (2009) Infectivity of the cloned genome, transmission and host range of an Iranian isolate of tomato leaf curl geminivirus. Iran J Plant Pathol 45:47–59 (In Persian with English summery)

    Google Scholar 

  6. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA β satellites of begomoviruses. Arch Virol 153:763–781

    Article  PubMed  CAS  Google Scholar 

  7. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121

    Article  PubMed  CAS  Google Scholar 

  8. Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243

    Article  PubMed  CAS  Google Scholar 

  9. Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210

    Article  PubMed  CAS  Google Scholar 

  10. Brown JK, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin. Plant Dis 76:220–225

    Article  Google Scholar 

  11. Burch-Smith T, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus induced gene silencing for gene function studies in plant. Plant J 39:734–746

    Article  PubMed  CAS  Google Scholar 

  12. Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante R (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9:209–215

    Article  PubMed  CAS  Google Scholar 

  13. Chen LF, Rojas M, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL (2009) A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a DNA β. Mol Plant Pathol 10:415–430

    Google Scholar 

  14. Choi I-R, Stenger DC (1995) Strain-specific determinants of beet curly top geminivirus DNA replication. Virology 206:904–912

    Article  PubMed  CAS  Google Scholar 

  15. Cui XF, Li GX, Wang DW, Wu DW, Zhou XP (2005) A begomoviral DNA β encoded protein bind DNA, functions as a suppressor of RNA silencing and targets to the cell nucleus. J Virol 79:10764–10775

    Article  PubMed  CAS  Google Scholar 

  16. Darnet S, Rahier A (2004) Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl-oxidases. Biochem J 378:889–898

    Article  PubMed  CAS  Google Scholar 

  17. Dry I, Krake L, Mullineaux P, Rezaian A (2000) Regulation of tomato leaf curl viral gene expression in host tissues. Mol Plant Microbe Intract 13:529–537

    Article  CAS  Google Scholar 

  18. Dry IB, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus—the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093

    Article  PubMed  CAS  Google Scholar 

  19. Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian MA (1993) Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Virol 74:147–151

    Article  PubMed  CAS  Google Scholar 

  20. Ebadzad Sahraei G, Behjatnia SAA, Izadpanah K (2009) Infectivity of the cloned genome of Iranian isolate of Beet severe curly top virus in experimental hosts. Iran J Plant Pathol 44:176–183 (In Persian with English summery)

    Google Scholar 

  21. Eini O, Behjatnia SAA, Dogra S, Dry IB, Randles JW, Rezaian MA (2009) Identification of sequence elements regulating promoter activity and replication of a monopartite begomovirus-associated DNA beta satellite. J Gen Virol 90:253–260

    Article  PubMed  CAS  Google Scholar 

  22. Erdmann JB, Shepherd DN, Martin DP, Varsani A, Rybicki EP, Jeske H (2010) Replicative intermediates of maize streak virus found during leaf development. J Gen Virol 91:1077–1081

    Article  PubMed  CAS  Google Scholar 

  23. Fofana IBF, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613–624

    Article  PubMed  CAS  Google Scholar 

  24. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  25. Harrison BD, Robinson DJ (2002) Green shoots of geminivirology. Physiol Mol Plant Pathol 60:215–218

    Article  Google Scholar 

  26. Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  27. Jefferson RA, Ksvanagh TA, Bevan MW (1987) GUS fusions: β glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  28. Jones L, Ratcliff F, Baulcombe DC (2001) RNA directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Article  PubMed  CAS  Google Scholar 

  29. Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA beta satellite with a Begomovirus. Virology 305:310–317

    Article  PubMed  CAS  Google Scholar 

  30. Jupin I, Hericourt F, Benz B, Gronenborn B (1995) DNA replication specificity of TYLCV geminivirus is mediated by the amino-terminal 116 amino acids of Rep protein. FEBS Lett 362:116–120

    Article  PubMed  CAS  Google Scholar 

  31. Kahn SM, Jiang W, Borner C, O’Driscoll K, Weinstein IB (1990) Construction of defined deletion mutants by thermal cycled fusion: applications to protein kinase C. Tech J Meth Cell Mol Biol 2:27–30

    CAS  Google Scholar 

  32. Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    Article  PubMed  CAS  Google Scholar 

  33. Kon T, Rojas MR, Abdourhamane IK, Gilbertson RL (2009) Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 9190:1001–1013

    Article  Google Scholar 

  34. Li DM, Behjatnia SAA, Dry IB, Randles JW, Eini O, Rezaian MA (2007) Genomic regions of Tomato leaf curl virus DNA satellite required for replication and for satellite-mediated delivery of heterologous DNAs. J Gen Virol 88:2073–2077

    Article  PubMed  CAS  Google Scholar 

  35. Lin B, Behjatnia SAA, Dry IB, Randles JW, Rezaian MA (2003) High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305:353–363

    Article  PubMed  CAS  Google Scholar 

  36. Liu L, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701–711

    Article  PubMed  CAS  Google Scholar 

  37. Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    Article  PubMed  CAS  Google Scholar 

  38. Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11:209–212

    Article  PubMed  CAS  Google Scholar 

  39. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  PubMed  CAS  Google Scholar 

  40. Nawaz-Ul-Rehman MS, Mansoor S, Briddon RW, Fauquet CM (2009) Maintenance of an old word β satellite by a new word helper begomovirus and possible rapid adaptation of the β satellite. J Gen Virol 83:9347–9355

    CAS  Google Scholar 

  41. Pakniat-Jahromy A, Behjatnia SAA, Dry IB, Izadpanah K, Rezaian MA (2010) A new strategy for generating geminivirus resistant plants using a DNA betasatellite/split barnase construct. J Virol Methods 170:57–66

    Article  PubMed  CAS  Google Scholar 

  42. Pakniat-Jahromy A, Behjatnia SAA, Kharazmi S, Shahbazi M, Izadpanah K (2010) Molecular characterization and construction of an infectious clone of a new strain of Tomato yellow leaf curl virus in southern Iran. Iran J Plant Pathol 46:101–115

    Google Scholar 

  43. Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Roberson D (2001) Silencing of a meristematic gene using geminivirus derived vectors. Plant J 27:357–366

    Article  PubMed  CAS  Google Scholar 

  44. Polston JE, Bois D, Serra CA, Concepcion S (1994) First report of a tomato yellow leaf curl-like geminivirus in the Western Hemisphere. Plant Dis 78:831

    Article  Google Scholar 

  45. Qing L, Zhou XP (2009) Trans-replication of, and competition between, DNA β satellites in plants inoculated with Tomato yellow leaf curl China virus and Tobacco curly shoot virus. Phytopathology 99:716–720

    Article  PubMed  CAS  Google Scholar 

  46. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  CAS  Google Scholar 

  47. Rigden JE, Dry IB, Krake LR, Rezaian MA (1996) Plant virus DNA replication processes in Agrobacterium: insight into the origins of geminiviruses? Proc Natl Acad Sci USA 93:10280–10284

    Article  PubMed  CAS  Google Scholar 

  48. Rojas MR, Noueiry AO, Lucas WJ, Gilbertson RL (1998) Bean dwarf mosaic geminivirus movement proteins recognize DNA in a form- and size-specific manner. J Gen Virol 95:105–113

    CAS  Google Scholar 

  49. Saeed M, Behjatnia SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14

    Article  PubMed  CAS  Google Scholar 

  50. SAS Institute (1996) SAS user’s guide, 3rd edn. SAS Inst, NC

    Google Scholar 

  51. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895

    Article  PubMed  CAS  Google Scholar 

  52. Schabenberger O, Pierce F (2002) Contemporary statistical models for the plant and soil sciences. CRC Press, FL

    Google Scholar 

  53. Stanley J (2004) Subviral DNAs associated with geminivirus disease complexes. Vet Microbiol 98:121–129

    Article  PubMed  CAS  Google Scholar 

  54. Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier/Academic Press, London, pp 301–326

    Google Scholar 

  55. Tao XR, Qing L, Zhou XP (2004) Function of A-Rich region in DNA β associated with Tomato yellow leaf curl china virus. Chinese Sci Bull 49:1490–1493

    Article  CAS  Google Scholar 

  56. Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus based vectors for gene silencing in Arabidopsis. Plant J 30:107–114

    Article  PubMed  CAS  Google Scholar 

  57. Van der Meer IM, Spelt CE, Mol JNM, Stuitje AR (1990) Promoter analysis of the chalcone synthase (ChsA) gene of Petunia hybrida: a 67 bp promoter region directs flower specific expression. Plant Mol Biol 15:95–109

    Article  PubMed  Google Scholar 

  58. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  PubMed  CAS  Google Scholar 

  59. Xiaorong T, Yajuan Q, Xueping Z (2006) Modification of a viral satellite DNA-based gene silencing vector and its application to leaf or flower discoloration in Petunia hybrida. Chinese Sci Bull 51:2208–2213

    Article  Google Scholar 

  60. Zhou XP, Xie Y, Tao XR, Zhang ZK, Li ZH, Fauquet CM (2003) Characterization of DNA beta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Behjatnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharazmi, S., Behjatnia, S.A.A., Hamzehzarghani, H. et al. Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses. Arch Virol 157, 1269–1279 (2012). https://doi.org/10.1007/s00705-012-1290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1290-2

Keywords

Navigation