Skip to main content
Log in

Hardenbergia virus A, a novel member of the family Betaflexiviridae from a wild legume in Southwest Australia

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A 6,936-nucleotide sequence representing the complete genome of a plant virus, tentatively named Hardenbergia virus A, was obtained from Hardenbergia comptoniana. The predicted structure of the genome is a 5’ untranslated region (5’UTR), a 258-kDa polyprotein in open reading frame 1 (ORF1), a 43-kDa protein in ORF2, 3’UTR and poly(A) tail. The N-terminal region of ORF1 contains a replicase protein, and the C-terminal region contains a coat protein. The protein encoded by ORF2 has homology with p30-like viral movement proteins. The predicted genome organization and phylogeny of gene products places Hardenbergia virus A within the family Betaflexiviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Adams MJ, Antinow JF, Bar-Joseph M, Brunt AA, Candresse T, Foster GD, Martelli GP, Milne RG, Fauquet CM (2004) The new plant family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149:1045–1060

    PubMed  CAS  Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146

    Article  PubMed  CAS  Google Scholar 

  4. Cox BA, Jones RAC (2010) Genetic variability in the coat protein gene of Potato virus S isolates and distinguishing its biologically distinct strains. Arch Virol 155:1163–1169

    Article  PubMed  CAS  Google Scholar 

  5. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2010) Geneious v5.0. http://www.geneious.com

  6. Gambley CF, Thomas JE (2001) Molecular characterisation of Banana mild mosaic virus, a new filamentous virus in Musa spp. Arch Virol 146:1369–1379

    Article  PubMed  CAS  Google Scholar 

  7. Geering AD, Thomas JE (1999) Characterisation of a virus from Australia that is closely related to papaya mosaic potexvirus. Arch Virol 144:577–592

    Article  PubMed  CAS  Google Scholar 

  8. Hailstones DL, Bryant KL, Broadbent P, Zhou C (2000) Detection of Citrus tatter leaf virus with reverse transcription-polymerase chain reaction (RT-PCR). Aust Plant Pathol 29:240–248

    Article  Google Scholar 

  9. Hirata H, Lu X, Yamaji Y, Kagiwada S, Ugaki M, Namba S (2003) A single silent substitution in the genome of Apple stem grooving virus causes symptom attenuation. J Gen Virol 84:2579–2583

    Article  PubMed  CAS  Google Scholar 

  10. Hirata H, Yamaji Y, Komatsu K, Kagiwada S, Oshima K, Okano Y, Takahashi S, Ugaki M, Namba S (2010) Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Research 152:1–9

    Article  PubMed  CAS  Google Scholar 

  11. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Article  PubMed  CAS  Google Scholar 

  12. Lazarovitz SG, Beachy RN (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548

    Article  Google Scholar 

  13. Martelli GP, Adams MJ, Kreuze JF, Dolja VV (2007) Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45:73–100

    Article  PubMed  CAS  Google Scholar 

  14. Namba S (1995) Capillovirus genus. Arch Virol (Suppl 10) 465–467

  15. Noorami MS, Awasthi P, Singh RM, Ram R, Sharma MP, Singh SR N, Ahmed N, Hallan V, Zaidi AA (2010) Complete nucleotide sequence of cherry virus A (CVA) infecting sweet cherry in India. Arch Virol 155:2079–2082

    Article  Google Scholar 

  16. Poke FS (2008) Hop mosaic virus: complete nucleotide sequence and relationship to other carlaviruses. Arch Virol 153:1615–1619

    Article  PubMed  CAS  Google Scholar 

  17. Rozanov MN, Koonin EV, Gorbalenya AE (1992) Conservation of the putative methyl-transferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134

    Article  PubMed  CAS  Google Scholar 

  18. Saldarelli P, Rowhani A, Routh G, Minafra A, Digiaro M (1998) Use of degenerate primers in a RT-PCR assay for the identification and analysis of some filamentous viruses, with special reference to clostero- and vitiviruses of the grapevine. Euro J Plant Pathol 104:945–950

    Article  CAS  Google Scholar 

  19. Tatineni S, Afunian MR, Gowda S, Hilf ME, Bar-Joseph M, Dawson WO (2009) Characterization of the 5′- and 3′-terminal subgenomic RNAs produced by a capillovirus: evidence for a CP subgenomic RNA. Virology 385:521–528

    Article  PubMed  CAS  Google Scholar 

  20. Webster C, Jones RAC, Coutts BA, Jones MGK, Wylie SJ (2007) Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the southwest Australian floristic region. Plant Pathol 56:729–742

    Article  CAS  Google Scholar 

  21. Wylie SJ, Nouri S, Coutts BA, Jones MGK (2010) Narcissus late season yellows virus and Vallota speciosa virus found infecting domestic and wild populations of Narcissus species in Australia. Arch Virol 155:1171–1174

    Article  PubMed  CAS  Google Scholar 

  22. Yaegashi H, Takahashi T, Isogai M, Kobori T, Ohki S, Yoshikawa N (2007) Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana. J Gen Virol 88:316–324

    Article  PubMed  CAS  Google Scholar 

  23. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Wylie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wylie, S., Jones, M. Hardenbergia virus A, a novel member of the family Betaflexiviridae from a wild legume in Southwest Australia. Arch Virol 156, 1245–1250 (2011). https://doi.org/10.1007/s00705-011-0963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0963-6

Keywords

Navigation