Skip to main content

Advertisement

Log in

Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Due to their natural host-range restriction to avian species, canarypox virus (CP) and fowlpox virus (FP) represent efficient and safe vaccine vectors, as they correctly express transgenes in human cells, elicit complete immune responses, and show protective efficacy in preclinical animal models. At present, no information is available on the differences in the abortive replication of these two avipox viruses in mammalian cells. In the present study, the replicative cycles of CP and FP, wild-type and recombinants, are compared in permissive and non-permissive cells, using transmission electron microscopy. We demonstrate that in non-permissive cells, the replicative cycle is more advanced in FP than in CP, that human cells, whether immune or not, are less permissive to avipox replication than monkey cells, and that the presence of virus-like particles only occurs after FP infection. Overall, these data suggest that the use of FP recombinants is more appropriate than the use of CP for eliciting an immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CP:

Canarypox virus(es)

FP:

Fowlpox virus(es)

CPwt:

Canarypox wild-type

FPwt:

Fowlpox wild-type

CPgp :

CPgag/pol recombinant

CPenv :

CPenv recombinant

CPgpe :

CPgag/pol/env recombinant

FPgp :

FPgag/pol recombinant

FPenv :

FPenv recombinant

HIV:

Human immunodeficiency virus

SIV:

Simian immunodeficiency virus

MVA:

Modified vaccinia virus Ankara

NYVAC:

New York vaccine

V:

Viroplasm

VF:

Viral factories

C:

Crescent(s)

PS:

Paracrystalline structure(s)

IV:

Immature virion(s)

MV:

Mature virion(s)

EV:

Extracellular virion(s)

VLP:

Virus-like particle(s)

CEF:

Chick embryo fibroblast(s)

PBMC:

Peripheral blood mononuclear cell(s)

MΦ:

Macrophage(s)

DC:

Dendritic cell(s)

TEM:

Transmission electron microscopy

References

  1. Afonso C, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL (2000) The genome of fowlpox virus. J Virol 74:3815–3831

    Article  CAS  PubMed  Google Scholar 

  2. Baxby D, Paoletti E (1992) Potential use of nonreplicating vectors as recombinant vaccines. Vaccine 10:8–9

    Article  CAS  PubMed  Google Scholar 

  3. Belshe RB, Stevens C, Gorse GJ, Buchbinder SP, Weinhold K, Sheppard H, Stablein D, Self SG, McNamara J, Frey SE, Flores J, Excler JL, Klein M, Habib RE, Duliege AM, Harro CD, Corey L, Keefer MC, Mulligan MJ, Wright PF, Celum C, Judson F, Mayer K, McKirnan D, Marmor M, Woody G (2001) Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: a phase 2 study in higher- and lower-risk volunteers. J Infect Dis 183:1343–1352

    Article  CAS  PubMed  Google Scholar 

  4. Blanchard TJ, Alcami A, Andrea P, Smith GL (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167

    CAS  PubMed  Google Scholar 

  5. Cao H, Kaleebu P, Hom D, Flores J, Agrawal D, Jones N, Serwanga J, Okello M, Walker C, Sheppard H, El-Habib R, Klein M, Mbidde E, Mugyenyi P, Walker B, Ellner J, Mugerwa R (2003) Immunogenicity of a recombinant human immunodeficiency virus (HIV)-canarypox vaccine in HIV-seronegative Ugandan volunteers: results of the HIV Network for prevention trials 007 vaccine study. J Infect Dis 187:887–895

    Article  CAS  PubMed  Google Scholar 

  6. Corey L, Mulligan M, Goepfert P, Sabbaj S, Clements-Mann ML, Harrow C, Schwartz D, Dolin R, Evans T, Keefer MC, Belshe R, Gorse GJ, Frey SE, McElrath MJ, Graham BS, Wright PF, Spearman P, Weinhold K, Montefiori D, Greenberg M, Klein M, El Habib R, Excler JL, Duliege A-M, Stablein D, Wolff M, Smith C, Grabowsky M, Savarese B, Clare Walker M (2001) Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus Type 1 Env, Gag, and Pro in combination with RGP120 the AIDS vaccine evaluation group 022 protocol team. J Infect Dis 183:563–570

    Article  CAS  Google Scholar 

  7. Coupar BEH, Purcell DFJ, Thomson SA, Ramshaw IA, Kent SJ, Boyle DB (2006) Fowlpox virus vaccines for HIV and SHIV clinical and pre-clinical trials. Vaccine 24:1378–1388

    Article  CAS  PubMed  Google Scholar 

  8. de Bruyn G, Rossini AJ, Chiu YL, Holman D, Elizaga ML, Frey SE, Burke DS, Evans TG, Corey L, Keefer MC (2004) Safety profile of recombinant canarypox HIV vaccines. Vaccine 22:704–713

    Article  PubMed  Google Scholar 

  9. Earl PL, Wyatt LS, Montefiori DC, Bilska M, Woodward R, Markham PD, Malley JD, Vogel TU, Allen TM, Watkins DI, Miller N, Moss B (2002) Comparison of vaccine strategies using recombinant env-gag-pol MVA with or without an oligomeric Env protein boost in the SHIV rhesus macaque model. Virology 294:270–281

    Article  CAS  PubMed  Google Scholar 

  10. Fang ZY, Kuli-Zade I, Spearman P (1999) Efficient human immunodeficiency virus (HIV)-1 Gag-Env pseudovirion formation elicited from mammalian cells by a canarypox HIV vaccine candidate. J Infect Dis 180:1122–1132

    Article  CAS  PubMed  Google Scholar 

  11. Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J (2004) Poxvirus-based vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev Vaccin 3:S75–S88

    Article  CAS  Google Scholar 

  12. Fries LF, Tartaglia J, Taylor J, Kauffman EK, Meignier B, Paoletti E, Plotkin S (1996) Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine 14:1171–1179

    Article  Google Scholar 

  13. Goepfert PA, Horton H, McElrath MJ, Gurunathan S, Ferrari G, Tomaras GD, Montefiori DC, Allen M, Chiu YL, Spearman P, Fuchs JD, Koblin BA, Blattner WA, Frey SE, Keefer MC, Baden LR, Corey L (2005) High-dose recombinant Canarypox vaccine expressing HIV-1 protein, in seronegative human subjects. J Infect Dis 192:1249–1259

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths G, Roos N, Schleich S, Locker JK (2001) Structure and assembly of intracellular mature vaccinia virus: thin-section analyses. J Virol 75:11056–11070

    Article  CAS  PubMed  Google Scholar 

  15. Gupta K, Hudgens M, Corey L, McElrath MJ, Weinhold K, Montefiori DC, Gorse GJ, Frey SE, Keefer MC, Evans TG, Dolin R, Schwartz D, Harro CD, Graham BS, Spearman PW, Mulligan M, Goepfert P (2002) Safety and immunogenicity of a high-titered canarypox vaccine in combination with rgp120 in a diverse population of HIV-1-uninfected adults: AIDS vaccine evaluation group protocol 022A. J Acquir Immune Defic Syndr 29:254–261

    CAS  PubMed  Google Scholar 

  16. Husain M, Weiberg AS, Moss B (2006) Existence of an operative pathway from the endoplasmic reticulum to the immature poxvirus membrane. Proc Natl Acad Sci USA 103:19506–19511

    Article  CAS  PubMed  Google Scholar 

  17. Irvine KR, Chamberlain RS, Shulman EP, Rosenberg SA, Restifo NP (1997) Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst 89:1595–1601

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins S, Gritz L, Fedor CH, O’Neill E, Cohen LK, Panicali DL (1991) Formation of lentivirus particles by mammalian cells infected with recombinant fowlpox virus. AIDS Res Hum Retrovir 7:991–997

    Article  CAS  PubMed  Google Scholar 

  19. Kent SJ, Zhao A, Dale CJ, Land S, Boyle DB, Ramshaw IA (2000) A recombinant avipoxvirus HIV-1 vaccine expressing interferon-gamma is safe and immunogenic in macaques. Vaccine 18:2250–2256

    Article  CAS  PubMed  Google Scholar 

  20. Kresge KJ (2009) Raft of results energizes researchers. IAVI Rep 13:4–17

    Google Scholar 

  21. Kyriakis CS, De Vleeschauwer A, Barb F, Bublot M, Van Reeth K (2009) Safety, immunogenicity and efficacy of poxvirus-based vector vaccines expressing the haemagglutinin gene of a highly pathogenic H5N1 avian influenza virus in pigs. Vaccine 27:2258–2264

    Article  CAS  PubMed  Google Scholar 

  22. Mayr A, Hochstein-Mintzel V, Stickl H (1975) Passage history, properties, and applicability of the attenuated vaccinia virus strain MVA. Infection 3:6–14

    Article  Google Scholar 

  23. Nacsa J, Radaelli A, Edghill-Smith Y, Venzon D, Tsai WP, De Giuli Morghen C, Panicali DL, Tartaglia J, Franchini G (2004) Avipox-based simian immunodeficiency virus (SIV) vaccines elicit a high frequency of SIV-specific CD4+ and CD8+ T-cell responses in vaccinia-experienced SIVmac251-infected macaques. Vaccine 22:597–606

    Article  CAS  PubMed  Google Scholar 

  24. Perkus M, Limbach K, Paoletti E (1989) Cloning and expression of foreign genes in vaccinia virus, using a host range selection system. J Virol 63:3829–3836

    CAS  PubMed  Google Scholar 

  25. Picard O, Lebas J, Imbert JC, Bigel P, Zagury D (1991) Complication of intramuscular/subcutaneous immune therapy in severely immune-compromised individuals. J Acquir Immune Defic Syndr 4:641–643

    CAS  PubMed  Google Scholar 

  26. Radaelli A, Bonduelle O, Beggio P, Mahe B, Pozzi E, Elli V, Paganini M, Zanotto C, De Giuli Morghen C, Combadière B (2007) Prime-boost immunization with DNA, recombinant fowlpox virus and VLP(SHIV) elicit both neutralizing antibodies and IFNgamma-producing T cells against the HIV-envelope protein in mice that control env-bearing tumour cells. Vaccine 25:2128–2138

    Article  CAS  PubMed  Google Scholar 

  27. Radaelli A, De Giuli Morghen C (1994) Expression of HIV-1 envelope gene by recombinant avipoxvirus. Vaccine 12:1101–1109

    Article  CAS  PubMed  Google Scholar 

  28. Radaelli A, Gimelli M, Cremonesi C, Scarpini C, De Giuli Morghen C (1994) Humoral and cell mediated immunity in rabbits immunized with live non replicating avipox recombinants expressing the HIV-1sf2 env gene. Vaccine 12:1110–1117

    Article  CAS  PubMed  Google Scholar 

  29. Radaelli A, Zanotto C, Perletti G, Elli V, Vicenzi E, Poli G, De Giuli Morghen C (2003) Comparative analysis of immune responses and cytokine profiles elicited in rabbits by the combined use of recombinant fowlpox viruses, plasmid and virus-like particles in prime-boost vaccination protocols against SHIV. Vaccine 21:2052–2064

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez JR, Risco C, Carrascosa JL, Esteban M, Rodriguez D (1998) Vaccinia virus 15-kilodalton (A14L) protein is essential for assembly and attachment of viral crescents to virosomes. J Virol 72:1287–1296

    CAS  PubMed  Google Scholar 

  31. Sabbaj S, Mulligan MJ, Hsieh R-H, McGhee JR (2000) Cytokine profiles in seronegative volunteers immunized with a recombinant canarypox and gp120 prime-boost HIV-1 vaccine. J Virol 14:1365–1374

    CAS  Google Scholar 

  32. Sadavis EC, Chang PW, Gulka G (1985) Morphogenesis of canary poxvirus and its entrance into inclusion bodies. Am J Vet Res 46:529–535

    Google Scholar 

  33. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  CAS  PubMed  Google Scholar 

  34. Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG (2005) Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccin 4:63–76

    Article  CAS  Google Scholar 

  35. Sodeik B, Doms RW, Ericsson M, Hiller G, Machamer CE, van’t Hof W, van Meer G, Moss B, Griffiths G (1993) Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol 121:521–541

    Article  CAS  PubMed  Google Scholar 

  36. Somogyi P, Frazier J, Skinner MA (1993) Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197:439–444

    Article  CAS  PubMed  Google Scholar 

  37. Tartaglia J, Perkus M, Taylor J, Norton EK, Audonnet JC, Cox WI, Davis D, van der Hoeven J, Meigneier B, Riviere M (1992) NYVAC: a highly attenuated strain of vaccinia virus. Virology 188:217–232

    Article  CAS  PubMed  Google Scholar 

  38. Tartaglia J, Taylor J, Cox WJ, Audonnet JC, Perkus M, Paoletti E, Radaelli A, De Giuli Morghen C, Meigneier B, Riviere M, Weinhold K (1993) Novel poxvirus strains as research tools and vaccine vectors. In: Koff WC, Wong-Staal F, Kennedy RC (eds) AIDS research reviews. Marcel Dekker, New York, pp 361–378

    Google Scholar 

  39. Taylor J, Paoletti E (1988) Fowlpox virus as a vector in non-avian species. Vaccine 6:466–468

    Article  CAS  PubMed  Google Scholar 

  40. Taylor J, Weinberg R, Kawaoka Y, Webster RG, Paoletti E (1988) Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 6:504–508

    Article  CAS  PubMed  Google Scholar 

  41. Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E (1988) Recombinant fowlpox virus inducing protective immunity in nonavian species. Vaccine 6:497–503

    Article  CAS  PubMed  Google Scholar 

  42. Tulman ER, Alfonso CL, Lu Z, Zsak L, Kutish GF, Rock DL (2004) The genome of canarypox virus. J Virol 78:353–366

    Article  CAS  PubMed  Google Scholar 

  43. Wolffe EJ, Moore DM, Peters PJ, Moss B (1996) Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J Virol 70:2797–2808

    CAS  PubMed  Google Scholar 

  44. Xia J, Ramanathan B, Barsoum J, Deschenes GR, Ba L, Binley J, Schiller D, Bauer DE, Chen DC, Hurley A, Gebuhrer L, El Habib R, Caudrelier P, Klein M, Zhang L, Ho DD, Markowitz M (2002) Safety and immunogenicity of ALVAC vCP1452 and recombinant gp160 in newly human immunodeficiency virus Type 1-infected patients treated with prolonged highly active antiretroviral therapy. J Virol 76:2206–2216

    Article  Google Scholar 

  45. Zanotto C, Paganini M, Elli V, Basavecchia V, Neri M, De Giuli Morghen C, Radaelli A (2005) Molecular and biological characterization of simian-human immunodeficiency virus-like particles produced by recombinant fowlpox viruses. Vaccine 23:4745–4753

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Italian Ministry of Health (National Programme of AIDS, grant nos. 45F.10, 45G.10, 30G.26 and 45D/1.20), by the Italian Ministry of University and Research (Cofin-PRIN 2007) and by the EC Microbicide Program “SHIVA” no. 503162. We also thank Dr. Christopher Berrie for editorial assistance with the manuscript.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Radaelli.

Additional information

S. Pacchioni and L. Volonté contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacchioni, S., Volonté, L., Zanotto, C. et al. Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis. Arch Virol 155, 915–924 (2010). https://doi.org/10.1007/s00705-010-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0663-7

Keywords

Navigation