Skip to main content

Advertisement

Log in

Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) proteins are members of a protein family sharing the common characteristic of cytidine deaminase activity. The antiviral activity of APOBEC3G and APOBEC3F has been studied more extensively than that of the other members of this family. The antiviral activity of APOBEC3B and APOBEC3DE has also been described. Studies of other APOBEC proteins have not revealed any antiviral activities against HIV-1; however, further investigation is required. In the absence of human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif), APOBEC3G and APOBEC3F are incorporated into HIV-1 virions and hypermutate the viral genomic DNA by their cytidine deaminase activity. HIV-1 Vif protein suppresses the antiviral role of APOBEC proteins by several mechanisms that lead to inhibition of incorporation of APOBEC3G/3F into HIV-1 virions. The detailed mechanisms involved in the suppression of APOBEC proteins by Vif are still being elucidated. Novel studies in which as yet undefined aspects of the suppression of APOBEC proteins are investigated could reveal important and potentially exploitable information for addressing HIV-1 infection in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson JL, Hope TJ (2004) HIV accessory proteins and surviving the host cell. Curr HIV/AIDS Rep 1:47–53

    Article  PubMed  Google Scholar 

  2. Anderson JL, Hope TJ (2003) Recent insights into HIV accessory proteins. Curr Infect Dis Rep 5:439–450

    Article  PubMed  Google Scholar 

  3. Anton LC, Schubert U, Bacik I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW (1999) Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124

    PubMed  CAS  Google Scholar 

  4. Argyris EG, Pomerantz RJ (2004) HIV-1 Vif versus APOBEC3G: newly appreciated warriors in the ancient battle between virus and host. Trends Microbiol 12:145–148

    Article  PubMed  CAS  Google Scholar 

  5. Bach D, Peddy S, Mangeat B, Lakkaraju A, Strub K, Trono D (2008) Characterization of APOBEC3G binding to 7SL RNA. Retrovirology 5:54

    Article  PubMed  CAS  Google Scholar 

  6. Barboric M, Zhang F, Besenicar M, Plemenitas A, Peterlin BM (2005) Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation. J Virol 79:11135–11141

    Article  PubMed  CAS  Google Scholar 

  7. Bardy M, Gay B, Pebernard S, Chazal N, Courcoul M, Vigne R, Decroly E, Boulanger P (2001) Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. J Gen Virol 82:2719–2733

    PubMed  CAS  Google Scholar 

  8. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 101:4894–4899

    Article  PubMed  CAS  Google Scholar 

  9. Bennett RP, Diner E, Sowden MP, Lees JA, Wedekind JE, Smith HC (2006) APOBEC-1 and AID are nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochem Biophys Res Commun 350:214–219

    Article  PubMed  CAS  Google Scholar 

  10. Bernacchi S, Henriet S, Dumas P, Paillart JC, Marquet R (2007) RNA and DNA binding properties of HIV-1 Vif protein. J Biol Chem 282:26361–26368

    Article  PubMed  CAS  Google Scholar 

  11. Berthoux L, Sebastian S, Sayah DM, Luban J (2005) Disruption of human TRIM5α antiviral activity by nonhuman primate orthologues. J Virol 79:7883–7888

    Article  PubMed  CAS  Google Scholar 

  12. Bishop KN, Holmes RK, Malim MH (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80:8450–8458

    Article  PubMed  CAS  Google Scholar 

  13. Bishop KN, Holmes RK, Sheehy AM, Malim MH (2004) APOBEC-mediated editing of viral RNA. Science 305:645

    Article  PubMed  CAS  Google Scholar 

  14. Bogerd HP, Doehle BP, Wiegand HL, Cullen BR (2004) A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 101:3770–3774

    Article  PubMed  CAS  Google Scholar 

  15. Bonvin M, Greeve J (2007) Effects of point mutations in the cytidine deaminase domains of APOBEC3B on replication and hypermutation of hepatitis B virus in vitro. J Gen Virol 88:3270–3274

    Article  PubMed  CAS  Google Scholar 

  16. Bukrinskaya AG (2004) HIV-1 assembly and maturation. Archiv Virol 149:1067–1082

    Article  CAS  Google Scholar 

  17. Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virol 81:5000–5013

    Article  PubMed  CAS  Google Scholar 

  18. Camaur D, Trono D (1996) Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J Virol 70:6106–6111

    PubMed  CAS  Google Scholar 

  19. Chelico L, Sacho EJ, Erie DA, Goodman MF (2008) A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283:13780–13791

    Article  PubMed  CAS  Google Scholar 

  20. Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114

    Article  PubMed  CAS  Google Scholar 

  21. Dang Y, Wang X, Esselman WJ, Zheng YH (2006) Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 80:10522–10533

    Article  PubMed  CAS  Google Scholar 

  22. DeHart JL, Bosque A, Harris RS, Planelles V (2008) Human immunodeficiency virus type 1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation. J Virol 82:9265–9272

    Article  PubMed  CAS  Google Scholar 

  23. Dettenhofer M, Cen S, Carlson BA, Kleiman L, Yu XF (2000) Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J Virol 74:8938–8945

    Article  PubMed  CAS  Google Scholar 

  24. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280:1880–1884

    Article  PubMed  CAS  Google Scholar 

  25. Esnault CC, Millet J, Schwartz O, Heidmann T (2006) Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acid Res 34:1522–1531

    Article  PubMed  CAS  Google Scholar 

  26. Farrow MA, Sheehy AM (2008) Vif and APOBEC3G in the innate immune response to HIV: a tale of two proteins. Future Microbiol 3:145–154

    Article  PubMed  CAS  Google Scholar 

  27. Franca R, Spadari S, Maga G (2005) Human immunodeficiency virus (HIV-1) auxiliary protein Vif and cellular APOBEC deaminases: their role unveiled? J Biol Sci 5:855–863

    Article  CAS  Google Scholar 

  28. Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH (2003) Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J Virol 77:5810–5820

    Article  PubMed  CAS  Google Scholar 

  29. Gandhi SK, Siliciano JD, Bailey JR, Siliciano RF, Blankson JN (2008) Role of APOBEC3G/F-mediated hypermutation in the control of human immunodeficiency virus type 1 in elite suppressors. J Virol 82:3125–3130

    Article  PubMed  CAS  Google Scholar 

  30. Goncalves J, Santa-Marta M (2004) HIV-1 Vif and APOBEC3G: multiple roads to one goal. Retrovirology. doi:10.1186/1742-4690-1181-1128

  31. Guo F, Cen S, Niu M, Saadatmand J, Kleiman L (2006) The inhibition of tRNALys3-primed reverse transcription by human APOBEC3G during HIV-1 replication. J Virol. doi:10.1128/JVI.01038-01006

  32. Hache G, Mansky LM, Harris RS (2006) Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Rev 8:148–157

    PubMed  Google Scholar 

  33. Hache G, Shindo K, Albin J, Harris R (2008) Evolution of HIV-1 isolates that use a novel Vif-independent mechanism to resist restriction by human APOBEC3G. Curr Biol 18:819–824

    Article  PubMed  CAS  Google Scholar 

  34. Harris RS, Bishop KN, Sheehy AM, Craig H, Petersen-Mahrt S, Watt I, Neuberger M, Malim M (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809

    Article  PubMed  CAS  Google Scholar 

  35. Harris RS, Petersen-Mahrt S, Neuberger M (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10:1247–1253

    Article  PubMed  CAS  Google Scholar 

  36. Henriet S, Richer D, Bernacchi S, Decroly E, Vigne R, Ehresmann B, Ehresmann C, Paillart JC, Marquet R (2005) Cooperative and specific binding of Vif to the 50 region of HIV-1 genomic RNA. J Mol Biol 354:55–72

    Article  PubMed  CAS  Google Scholar 

  37. Heuverswyn FV, Peeters M (2007) The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 9:338–346

    Article  PubMed  Google Scholar 

  38. Hill MS, Ruiz A, Gomez LM, Miller JM, Berman NEJ, Stephens EB (2007) APOBEC3G expression is restricted to epithelial cells of the proximal convoluted tubules and is not expressed in the glomeruli of macaques. J Histochem Cytochem 55:63–70

    Article  PubMed  CAS  Google Scholar 

  39. Holmes RK, Koning FA, Bishop KN, Malim MH (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. J Biol Chem 282:2587–2595

    Article  PubMed  CAS  Google Scholar 

  40. Hope TJ, Huang X, McDonald D, Parslow TG (1990) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Biochemistry 87:7787–7791

    CAS  Google Scholar 

  41. Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H (2005) APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virol 79:11513–11516

    Article  PubMed  CAS  Google Scholar 

  42. Kao S, Miyagi E, Khan MA, Takeuchi H, Opi S, Goila-Gaur R, Strebel K (2004) Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells. Retrovirology 17:1–27

    Google Scholar 

  43. Khamsri B, Fujita M, Kamada K, Piroozmand A, Yamashita T, Uchiyama T, Adachi A (2006) Effects of lysine to arginine mutations in HIV-1 Vif on its expression and viral infectivity. Int J Mol Med 18:679–683

    PubMed  CAS  Google Scholar 

  44. Khan M, Kao S, Miyagi E (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79:5870–5874

    Article  PubMed  CAS  Google Scholar 

  45. Kock J, Blum HE (2008) Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H. J Gen Virol 89:1184–1191

    Article  PubMed  CAS  Google Scholar 

  46. Kotler M, Simm M, Zhao YS, Sova P, Chao W, Ohnona SF, Roller R, Krachmarow C, Potash MJ, Volsky DJ (1997) Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. J Virol 71:5774–5781

    PubMed  CAS  Google Scholar 

  47. Langlois MA, Beale RCL, Conticello SG, Neuberger MS (2005) Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic Acid Res 33:1913–1923

    Article  PubMed  CAS  Google Scholar 

  48. Lecossier D, Bouchonnet F, Clavel F, Hance AJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112

    Article  PubMed  CAS  Google Scholar 

  49. Lehmann DM, Galloway CA, Sowden MP, Smith HC (2006) Metabolic regulation of ApoB mRNA editing is associated with phosphorylation of APOBEC-1 complementation factor. Nucleic Acid Res 34:3299–3308

    Article  PubMed  CAS  Google Scholar 

  50. Li L, Li JY, Sui HS, Zhao RY, Liu YJ, Bao ZY, Liu SY, Zhuang DM (2008) HIV-1 Vif protein mediates the degradation of APOBEC3G in fission yeast when over-expressed using codon optimization. Virol Sin 23:255–264

    Article  CAS  Google Scholar 

  51. Liu B, Sarkis PTN, Luo K, Yu Y, Yu XF (2005) Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79:9579–9587

    Article  PubMed  CAS  Google Scholar 

  52. Liu Y, Li J, Kim BO, Pace BS, He JJ (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J Biol Chem 28:23854–23863

    Article  CAS  Google Scholar 

  53. Lochelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, Truyen U, Rosler U, Battenberg M, Saib A, Flory E, Cichutek K, Munk C (2005) The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci USA 102:7982–7987

    Article  PubMed  CAS  Google Scholar 

  54. Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81:7238–7248

    Article  PubMed  CAS  Google Scholar 

  55. Lv W, Liu Z, Jin H, Yu X, Zhang L, Zhang L (2007) Three-dimensional structure of HIV-1 Vif constructed by comparative modeling and the function characterization analyzed by molecular dynamics simulation. Org Biomol Chem 5:617–626

    Article  PubMed  CAS  Google Scholar 

  56. MacDuff DA, Harris RS (2006) Directed DNA deamination by AID/APOBEC3 in immunity. Curr Biol 16:R186–R189

    Article  PubMed  CAS  Google Scholar 

  57. Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31

    Article  PubMed  CAS  Google Scholar 

  58. Marin M, Golem S, Rose KM, Kozak SL, Kabat D (2007) HIV-1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism. J Virol. doi:10.1128/JVI.01078-01007

  59. Mehle A, Goncalves J, Santa-Marta M, Mcpike M, Gabuzda D (2004) Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif–Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18:2861–2866

    Article  PubMed  CAS  Google Scholar 

  60. Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabzda D (2004) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin–proteasome pathway. J Biol Chem 279:7792–7798

    Article  PubMed  CAS  Google Scholar 

  61. Mehle A, Thomas ER, Rajendran KS, Gabuzda D (2006) A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 281:17259–17265

    Article  PubMed  CAS  Google Scholar 

  62. Mehle A, Wilson H, Zhang C, Brazier AJ, McPike M, Pery E, Gabuzda D (2007) Identification of an APOBEC3G binding site in HIV-1 Vif and inhibitors of Vif APOBEC3G binding. J Virol. doi:10.1128/JVI.00204-00207

  63. Navarro F, Landau NR (2004) Recent insights into HIV-1 Vif. Curr Opin Immunol 16:477–482

    Article  PubMed  CAS  Google Scholar 

  64. Ochsenbauer C, Wilk T, Bosch V (1997) Analysis of vif-defective human immunodeficiency virus type 1 (HIV-1) virions synthesized in ‘non-permissive’ T lymphoid cells stably infected with selectable HIV-1. J Gen Virol 78:627–635

    PubMed  CAS  Google Scholar 

  65. OhAinle M, Kerns JA, Li MMH, Harmit SM, Emerman M (2008) Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4:249–259

    Article  PubMed  CAS  Google Scholar 

  66. OhAinle M, Kerns JA, Malik HS, Emerman M (2006) Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 80:3853–3862

    Article  PubMed  CAS  Google Scholar 

  67. Paulous S, Emerman M, Keller R, Montagnier L, Cordonnier A (1992) Functional mapping of the rev-responsive element of human immunodeficiency virus type 2 (HIV-2): influence of HIV-2 envelope-encoding sequences on HIV-1 gpl20 expression in the presence or absence of Rev. J Gen Virol 73:1773–1780

    Article  PubMed  CAS  Google Scholar 

  68. Pomerantz RJ (2003) The HIV-1 Vif protein: a paradigm for viral: cell interactions. Cell Mol Life Sci 60:2017–2019

    Article  PubMed  CAS  Google Scholar 

  69. Priet S, Gros N, Navarro JM, Boretto J, Canard B, Querat G, Sire J (2005) HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to the HIV-1 life cycle. Mol Cell 17:479–490

    Article  PubMed  CAS  Google Scholar 

  70. Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV (2005) APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle 4:1281–1285

    PubMed  CAS  Google Scholar 

  71. Rulli-Jr SJ, Mirro J, Hill SA, Lloyd P, Gorelick RJ, Coffin JM, Derse D, Rein A (2008) Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J Virol 82:6566–6575

    Article  CAS  Google Scholar 

  72. Sakai H, Shibata R, Sakuragi JI, Sakuragi S, Kawamura M, Adachi A (1993) Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol 67:1663–1666

    PubMed  CAS  Google Scholar 

  73. Sakai K, Dimas J, Lenardo MJ (2006) The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci USA 103:3369–3374

    Article  PubMed  CAS  Google Scholar 

  74. Salemi M, Strimmer K, Hall WW, Duffy M, Delaporte E, Mboup S, Peeters M, Vandamme AM (2001) Dating the common ancestor of SIVcpz and HIV-1 group M and the origin of HIV-1 subtypes using a new method to uncover clock-like molecular evolution. FASEB J 15:276–278

    PubMed  CAS  Google Scholar 

  75. Santa-Marta M, Silva FAD, Fonseca AM, Goncalves J (2004) HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Bacteriol Chem 280:8765–8775

    Google Scholar 

  76. Schrofelbauer B, Yu Q, Landau NR (2004) New insights into the role of Vif in HIV-1 replication. AIDS Rev 6:34–39

    PubMed  Google Scholar 

  77. Seelamgari A, Maddukuri A, Berro R, de-la-Fuente C, Kehn K, Deng L, Dadgar S, Bottazzi ME, Ghedin E, Pumfery A, Kashanchi F (2004) Role of viral regulatory and accessory proteins in HIV-1 replication. Front Biosci 1:2388–2413

    Article  Google Scholar 

  78. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    Article  PubMed  CAS  Google Scholar 

  79. Simon JHM, Miller DL, Fouchier RAM, Malim MH (1998) Virion incorporation of human immunodeficiency virus type-1 Vif is determined by intracellular expression level and may not be necessary for function. Virology 248:182–187

    Article  PubMed  CAS  Google Scholar 

  80. Soares AER, Soares MA, Schrago CG (2008) Positive selection on HIV accessory proteins and the analysis of molecular adaptation after interspecies transmission. J Mol Evol 66:598–604

    Article  PubMed  CAS  Google Scholar 

  81. Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural insight into the HIV Vif SOCS box and its role in human E3 ubiquitin ligase. J Virol 82:8656–8663

    Article  PubMed  CAS  Google Scholar 

  82. Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Bacteriol Chem 281:16837–16841

    CAS  Google Scholar 

  83. Stopak K, De-Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12:591–601

    Article  PubMed  CAS  Google Scholar 

  84. Strebel K, Khan MA (2008) APOBEC3G encapsidation into HIV-1 virions: which RNA is it? Retrovirology. doi:10.1186/1742-4690-1185-1155

  85. Sun BJ, Nie P (2004) Molecular cloning of the viperin gene and its promoter region from the mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol 101:161–170

    Article  PubMed  CAS  Google Scholar 

  86. Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32:2421–2429

    Article  PubMed  CAS  Google Scholar 

  87. Suzuki T, Park H, Lennarz WJ (2002) Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions. FASEB J 16:635–641

    Article  PubMed  CAS  Google Scholar 

  88. Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, Freed EO, Hu WS, Pathak VK (2004) Human APOBEC3G is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Bacteriol Chem 279:35822–35828

    CAS  Google Scholar 

  89. Tenno T, Fujiwara K, Tochio H, Lawi K, Morita EH, Hayashi H, Murata S, Hiroaki H, Sato M, Tanaka K, Shirakawa M (2004) Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 9:865–875

    Article  PubMed  CAS  Google Scholar 

  90. Turelli P, Jost S, Mangeat B, Trono D (2004) Response to comment on “inhibition of hepatitis B virus replication by APOBEC3G’’. Science 305:1403b

    Article  Google Scholar 

  91. Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829

    Article  PubMed  Google Scholar 

  92. Turelli P, Trono D (2005) Editing at the crossroad of innate and adaptive immunity. Science 307:1061–1065

    Article  PubMed  CAS  Google Scholar 

  93. Ulenga NK, Sarr AD, Hamel D, Sankale JL, Sankale JL, Mboup S, Kanki PJ (2008) The level of APOBEC3G (hA3G)-related G-to-A mutations does not correlate with viral load in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 24:1285–1290

    Article  PubMed  CAS  Google Scholar 

  94. Virgen CA, Hatziioannou T (2007) Antiretroviral activity and Vif sensitivity of rhesus macaque APOBEC3 Proteins. J Virol 81:13932–13937

    Article  PubMed  CAS  Google Scholar 

  95. Wang J, Shackelford JM, Selliah N, Shivers DK, O’neill E, Garcia JV, Muthumani K, Weiner D, Yu XF, Gabuzda D, Finkel TH (2008) The HIV-1 Vif protein mediates degradation of Vpr and reduces Vpr-induced cell cycle arrest. DNA Cell Biol 27:267–277

    Article  PubMed  CAS  Google Scholar 

  96. Wang T, Tian C, Zhang W, Luo K, Sarkis PTN, Yu L, Liu B, Yu Y, Yu XF (2007) 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 81:13112–13124

    Article  PubMed  CAS  Google Scholar 

  97. Wang X, Dolan PT, Dang Y, Zheng YH (2007) Biochemical differentiation of APOBEC3F and APOBEC3G proteins associated with HIV-1 life cycle. J Biol Chem 282:1585–1594

    Article  PubMed  Google Scholar 

  98. Wiegand HL, Doehle BP, Bogerd HP, Cullen BR (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23:2451–2458

    Article  PubMed  CAS  Google Scholar 

  99. Xiao-xia WU, Yi-cai MA (2005) Antiviral warrior-APOBEC3G. J Electron Sci Technol China 3:372–376

    Google Scholar 

  100. Xiao Z, Ehrlich E, Luo K, Xiong Y, Yu XF (2007) Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G. FASEB J 21:217–222

    Article  PubMed  CAS  Google Scholar 

  101. Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101:10786–10791

    Article  PubMed  CAS  Google Scholar 

  102. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11:435–442

    Article  PubMed  CAS  Google Scholar 

  103. Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF (2004) Selective assembly of HIV-1Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18:2867–2872

    Article  PubMed  CAS  Google Scholar 

  104. Zennou V, Perez-Caballero D, Gottlinger H, Bieniasz PD (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78:12058–12061

    Article  PubMed  CAS  Google Scholar 

  105. Zhang H, Pomerantz RJ, Dornadula G, Sun Y (2000) Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J Virol 74:8252–8261

    Article  PubMed  CAS  Google Scholar 

  106. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98

    Article  PubMed  CAS  Google Scholar 

  107. Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78:6073–6076

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bizhan Romani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, B., Engelbrecht, S. & Glashoff, R.H. Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Arch Virol 154, 1579–1588 (2009). https://doi.org/10.1007/s00705-009-0481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0481-y

Keywords

Navigation