Skip to main content

Advertisement

Log in

Recent insights into HIV accessory proteins

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

HIV produces structural, regulatory, and accessory proteins during viral replication in host cells. The accessory proteins include Nef, viral infectivity factor (Vif), viral protein R, and viral protein U or viral protein X. Although these accessory proteins are generally dispensable for viral replication in vitro, they are essential for viral pathogenesis in vivo. Consequently, there has been much interest in understanding how these accessory proteins function because this research may yield new antiviral targets to curb HIV pathogenesis in vivo. Therefore, this review highlights recent advances in understanding the HIV accessory proteins and emphasizes breakthrough insights into the elusive Vif protein and potential new targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science 2000, 287:607–614.

    Article  PubMed  CAS  Google Scholar 

  2. Strebel K, Daugherty D, Clouse K, et al.: The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 1987, 328:728–730.

    Article  PubMed  CAS  Google Scholar 

  3. Lake J, Carr J, Feng F, et al.: The role of Vif during HIV-1 infection: interaction with novel host cellular factors. J Clin Virol 2003, 26:143–152.

    Article  PubMed  CAS  Google Scholar 

  4. Simon JH, Miller DL, Fouchier RA, Malim MH: Virion incorporation of human immunodeficiency virus type-1 Vif is determined by intracellular expression level and may not be necessary for function. Virology 1998, 248:182–187.

    Article  PubMed  CAS  Google Scholar 

  5. Kao S, Akari H, Khan MA, et al.: Human immunodeficiency virus type 1 Vif is efficiently packaged into virions during productive but not chronic infection. J Virol 2003, 77:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  6. Bour S, Strebel K: HIV accessory proteins: multifunctional components of a complex system. Adv Pharmacol 2000, 48:75–119.

    PubMed  CAS  Google Scholar 

  7. von Schwedler U, Song J, Aiken C, Trono D: Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993, 67:4945–4955.

    Google Scholar 

  8. Goncalves J, Silva F, Freitas-Vieira A, et al.: Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. J Biol Chem 2002, 277:32036–32045.

    Article  PubMed  CAS  Google Scholar 

  9. Madani N, Millette R, Platt EJ, et al.: Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol 2002, 76:11133–11138. This study characterizes another component of the antiviral pathway in restrictive cells, which blocks HIV replication without Vif. In contrast to CEM15, this lymphocyte and macrophage-specific protein does not activate but likely participates in the antiviral pathway. Because this protein localizes to nuclear speckle domains that are dispersed in cells expressing Vif, this implies nuclear speckle domains are also involved in this anti-HIV pathway.

    Article  PubMed  CAS  Google Scholar 

  10. Li L, Olvera JM, Yoder KE, et al.: Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001, 20:3272–3281.

    Article  PubMed  CAS  Google Scholar 

  11. Hoglund S, Ohagen A, Lawrence K, Gabuzda D: Role of vif during packing of the core of HIV-1. Virology 1994, 201:349–355.

    Article  PubMed  CAS  Google Scholar 

  12. Khan MA, Akari H, Kao S, et al.: Intravirion processing of the human immunodeficiency virus type 1 Vif protein by the viral protease may be correlated with Vif function. J Virol 2002, 76:9112–9123.

    Article  PubMed  CAS  Google Scholar 

  13. Madani N, Kabat D: An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 1998, 72:10251–10255.

    PubMed  CAS  Google Scholar 

  14. Simon JH, Gaddis NC, Fouchier RA, Malim MH: Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 1998, 4:1397–1400.

    Article  PubMed  CAS  Google Scholar 

  15. Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418:646–650. This is a landmark paper identifying a cellular protein (CEM15) that impedes HIV replication in restrictive cells without Vif. This study implies Vif improves virion infectivity by overcoming the antiviral activity of CEM15 and provides new tools for characterizing this antiviral pathway and Vif function. Because the main target cells of HIV infection are restrictive, this research may yield new therapies that block Vif function in vivo, allowing the antiviral pathway in restrictive CD4+ T cells and macrophages to dominate, curbing viral pathogenesis in vivo.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang H, Pomerantz R, Dornadula G, Sun Y: Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J Virol 2000, 74:8252–8261.

    Article  PubMed  CAS  Google Scholar 

  17. Bourara K, Litvak S, Araya A: Generation of G-to-A and C-to-U changes in HIV-1 transcripts by RNA editing. Science 2000, 289:1564–1566.

    Article  PubMed  CAS  Google Scholar 

  18. Berkhout B, Das AT, Beerens N: HIV-1 RNA editing, hypermutation, and error-prone reverse transcription. Science 2001, 292:7.

    Article  PubMed  CAS  Google Scholar 

  19. Hassaïne G, Courcoul M, Bessou G, et al.: The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral Vif protein. J Biol Chem 2001, 276:16885–16893.

    Article  PubMed  Google Scholar 

  20. Zimmerman C, Klein KC, Kiser PK, et al.: Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 2002, 415:88–92.

    Article  PubMed  CAS  Google Scholar 

  21. Martinand C, Montavon C, Salehzada T, et al.: RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2-5A/RNase L pathway in human T cells. J Virol 1999, 73:290–296.

    PubMed  CAS  Google Scholar 

  22. Sharp PM, Bailes E, Stevenson M, et al.: Gene acquisition in HIV and SIV. Nature 1996, 383:586–587.

    Article  PubMed  CAS  Google Scholar 

  23. Fletcher TM 3rd, Brichacek B, Sharova N, et al.: Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 1996, 15:6155–6165.

    PubMed  CAS  Google Scholar 

  24. Heinzinger NK, Bukrinsky MI, Haggerty SA, et al.: The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994, 91:7311–7315.

    Article  PubMed  CAS  Google Scholar 

  25. Sherman MP, Schubert U, Williams SA, et al.: HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis. Virology 2002, 302:95–105.

    Article  PubMed  CAS  Google Scholar 

  26. Sherman MP, De Noronha CM, Williams SA, Greene WC: Insights into the biology of HIV-1 viral protein R. DNA Cell Biol 2002, 21:679–688.

    Article  PubMed  CAS  Google Scholar 

  27. Elder RT, Benko Z, Zhao Y: HIV-1 VPR modulates cell cycle G2/M transition through an alternative cellular mechanism other than the classic mitotic checkpoints. Front Biosci 2002, 7:d349-d357.

    Article  PubMed  CAS  Google Scholar 

  28. Chowdhury IH, Wang XF, Landau NR, et al.: HIV-1 Vpr activates cell cycle inhibitor p21/Waf1/Cip1: a potential mechanism of G2/M cell cycle arrest. Virology 2003, 305:371–377.

    Article  PubMed  CAS  Google Scholar 

  29. de Noronha CM, Sherman MP, Lin HW, et al.: Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 2001, 294:1105–1108.

    Article  PubMed  Google Scholar 

  30. Goh WC, Rogel ME, Kinsey CM, et al.: HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nature Med 1998, 4:65–71.

    Article  PubMed  CAS  Google Scholar 

  31. Sawaya BE, Khalili K, Gordon J, et al.: Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem 2000, 275:35209–35214.

    Article  PubMed  CAS  Google Scholar 

  32. Mouland AJ, Coady M, Yao XJ, Cohen EA: Hypophosphorylation of poly(A) polymerase and increased polyadenylation activity are associated with human immunodeficiency virus type 1 Vpr expression. Virology 2002, 292:321–330.

    Article  PubMed  CAS  Google Scholar 

  33. Brasey A, Lopez-Lastra M, Ohlmann T, et al.: The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 2003, 77:3939–3949. This report demonstrates that G2 cell cycle arrest improves translation of the viral structural protein, Gag, which initiates translation using an IRES element. This supports the premise that Vpr-induced, G2 cell cycle arrest functions to maximize viral protein expression and thus virion production to improve HIV replication. This implies G2 arrest by Vpr may increase viral protein expression by acting at translation and supports a previously undefined mechanism where HIV may impair translation of cell proteins to favor translation of the viral proteins.

    Article  PubMed  CAS  Google Scholar 

  34. Sachs AB: Cell cycle-dependent translation initiation: IRES elements prevail. Cell 2000, 101:243–245.

    Article  PubMed  CAS  Google Scholar 

  35. Gale M, Tan SL, Katze MG: Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 2000, 64:239–280.

    Article  PubMed  CAS  Google Scholar 

  36. Buck CB, Shen X, Egan MA, et al.: The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 2001, 75:181–191.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu Y, Roshal M, Li F, et al.: Upregulation of survivin by HIV-1 Vpr. Apoptosis 2003, 8:71–79.

    Article  PubMed  CAS  Google Scholar 

  38. Stewart SA, Poon B, Jowett JB, Chen IS: Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997, 71:5579–5592.

    PubMed  CAS  Google Scholar 

  39. Kino T, Gragerov A, Slobodskaya O, et al.: Human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces transcription of the HIV-1 and glucocorticoid-responsive promoters by binding directly to p300/CBP coactivators. J Virol 2002, 76:9724–9734.

    Article  PubMed  CAS  Google Scholar 

  40. Sherman MP, Greene WC: Slipping through the door: HIV entry into the nucleus. Microbes Infect 2002, 4:67–73.

    Article  PubMed  CAS  Google Scholar 

  41. Vasu SK, Forbes DJ: Nuclear pores and nuclear assembly. Curr Opin Cell Biol 2001, 13:363–375.

    Article  PubMed  CAS  Google Scholar 

  42. Sherman MP, de Noronha CM, Heusch MI, et al.: Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 2001, 75:1522–1532.

    Article  PubMed  CAS  Google Scholar 

  43. Le Rouzic E, Mousnier A, Rustum C, et al.: Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J Biol Chem 2002, 277:45091–45098.

    Article  PubMed  CAS  Google Scholar 

  44. McDonald D, Vodicka MA, Lucero G, et al.: Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002, 159:441–452.

    Article  PubMed  CAS  Google Scholar 

  45. Whittaker GR, Kann M, Helenius A: Viral entry into the nucleus. Annu Rev Cell Dev Biol 2000, 16:627–651.

    Article  PubMed  CAS  Google Scholar 

  46. Dvorin JD, Bell P, Maul GG, et al.: Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J Virol 2002, 76:12087–12096.

    Article  PubMed  CAS  Google Scholar 

  47. van de Bovenkamp M, Nottet HS, Pereira CF: Interactions of human immunodeficiency virus-1 proteins with neurons: possible role in the development of human immunodeficiency virus-1-associated dementia. Eur J Clin Invest 2002, 32:619–627.

    Article  PubMed  Google Scholar 

  48. Muthumani K, Hwang DS, Desai BM, et al.: HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem 2002, 277:37820–37831. This article clarifies the apoptosis cascade induced by Vpr using natural target cells of HIV infection, peripheral blood mononuclear cells, and relevant levels of Vpr expressed by the virus.

    Article  PubMed  CAS  Google Scholar 

  49. Jacotot E, Ravagnan L, Loeffler M, et al.: The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 2000, 191:33–46.

    Article  PubMed  CAS  Google Scholar 

  50. Yuan H, Xie YM, Chen IS: Depletion of Wee-1 kinase is necessary for both human immunodeficiency virus type 1 Vpr- and gamma irradiation-induced apoptosis. J Virol 2003, 77:2063–2070.

    Article  PubMed  CAS  Google Scholar 

  51. Somasundaran M, Sharkey M, Brichacek B, et al.: Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc Natl Acad Sci USA 2002, 99:9503–9508. This fascinating study defines an unusual mutation in Vpr as contributing to the lack of disease progression in a patient with stable T-cell counts, despite high levels of circulating HIV. Because this mutation impairs Vpr-induced apoptosis in vitro, it suggests that developing new antiviral therapies to block Vpr-induced apoptosis in vivo may curb viral pathogenesis and improve patient immune function.

    Article  PubMed  CAS  Google Scholar 

  52. Strebel K, Klimkait T, Martin M: A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 1988, 241:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  53. Deora A, Ratner L: Viral protein U (Vpu)-mediated enhancement of human immunodeficiency virus type 1 particle release depends on the rate of cellular proliferation. J Virol 2001, 75:6714–6718.

    Article  PubMed  CAS  Google Scholar 

  54. Marassi FM, Ma C, Gratkowski H, et al.: Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci USA 1999, 96:14336–14341.

    Article  PubMed  CAS  Google Scholar 

  55. Bour S, Boulerice F, Wainberg MA: Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. J Virol 1991, 65:6387–6396.

    PubMed  CAS  Google Scholar 

  56. Margottin F, Bour S, Durand H, et al.: A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1998, 1:565–574.

    Article  PubMed  CAS  Google Scholar 

  57. Bour S, Perrin C, Akari H, Strebel K: The human immunodeficiency virus type 1 Vpu protein inhibits NF-kB activation by interfering with bTrCP-mediated degradation of IkBb. J Biol Chem 2001, 276:15920–15928.

    Article  PubMed  CAS  Google Scholar 

  58. Casella CR, Rapaport EL, Finkel TH: Vpu increase susceptibility of human immunodeficiency virus type 1-infected cells to Fas killing. J Virol 1999, 73:92–100.

    PubMed  CAS  Google Scholar 

  59. Akari H, Bour S, Kao S, et al.: The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors. J Exp Med 2001, 194:1299–1311.

    Article  PubMed  CAS  Google Scholar 

  60. Callahan MA, Handley MA, Lee Y-H, et al.: Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 1998, 72:5189–5197.

    PubMed  CAS  Google Scholar 

  61. Handley MA, Paddock S, Dall A, Panganiban AT: Association of Vpu-binding protein with microtubules and Vpu-dependent redistribution of HIV-1 Gag protein. Virology 2001, 291:198–207.

    Article  PubMed  CAS  Google Scholar 

  62. Bour S, Perrin C, Strebel K: Cell surface CD4 inhibits HIV-1 particle release by interfering with Vpu activity. J Biol Chem 1999, 274:33800–33806.

    Article  PubMed  CAS  Google Scholar 

  63. Deacon NJ, Tsykin A, Solomon A, et al.: Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995, 270:988–991.

    Article  PubMed  CAS  Google Scholar 

  64. Kirchhoff F, Greenough TC, Brettler DB, et al.: Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995, 332:228–232.

    Article  PubMed  CAS  Google Scholar 

  65. Greenway AL, Holloway G, McPhee DA: HIV-1 Nef: a critical factor in viral-induced pathogenesis. Adv Pharmacol 2000, 48:299–343.

    Article  PubMed  CAS  Google Scholar 

  66. Forshey BM, Aiken C: Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of nef with the subviral ribonucleoprotein complex. J Virol 2003, 77:4409–4414.

    Article  PubMed  CAS  Google Scholar 

  67. Ahmad N, Venkatesan S: Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 1988, 241:1481–1485.

    Article  PubMed  CAS  Google Scholar 

  68. Cullen BR: HIV-1 auxiliary proteins: making connections in a dying cell. Cell 1998, 93:685–692.

    Article  PubMed  CAS  Google Scholar 

  69. Janvier K, Craig H, Hitchin D, et al.: HIV-1 Nef stabilizes the association of adaptor protein complexes with membranes. J Biol Chem 2003, 278:8725–8732.

    Article  PubMed  CAS  Google Scholar 

  70. Arora VK, Fredericksen BL, Garcia JV: Nef: agent of cell subversion. Microbes Infect 2002, 4:189–199.

    Article  PubMed  CAS  Google Scholar 

  71. Geyer M, Yu H, Mandic R, et al.: Subunit H of the V-ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 2002, 277:28521–28529.

    Article  PubMed  CAS  Google Scholar 

  72. Lundquist CA, Tobiume M, Zhou J, et al.: Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 2002, 76:4625–4633.

    Article  PubMed  CAS  Google Scholar 

  73. Stoddart CA, Geleziunas R, Ferrell S, et al.: Human immunodeficiency virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol 2003, 77:2124–2133. This novel study uses mouse models of HIV to demonstrate CD4 reduction by Nef is a more important factor of HIV pathogenesis than Nef-induced downmodulation of MHC I signaling through the proline-rich motif and effects on viral infectivity. Targeting this function of Nef in vivo may be of great therapeutic benefit to curb HIV pathogenesis in patients.

    Article  PubMed  CAS  Google Scholar 

  74. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, et al.: HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 2002, 111:853–866. This is a complete characterization of the endocytic pathway and concerted action of Nef motifs that downmodulate MHC I classes HLA-A and HLA-B from the cell surface.

    Article  PubMed  CAS  Google Scholar 

  75. Kasper MR, Collins KL: Nef-mediated disruption of HLA-A2 transport to the cell surface in T cells. J Virol 2003, 77:3041–3049.

    Article  PubMed  CAS  Google Scholar 

  76. Williams M, Roeth JF, Kasper MR, et al.: Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002, 76:12173–12184.

    Article  PubMed  CAS  Google Scholar 

  77. Tomiyama H, Akari H, Adachi A, Takiguchi M: Different effects of Nef-mediated HLA class I down-regulation on human immunodeficiency virus type 1-specific CD8(+) T-cell cytolytic activity and cytokine production. J Virol 2002, 76:7535–7543.

    Article  PubMed  CAS  Google Scholar 

  78. Yang OO, Nguyen PT, Kalams SA, et al.: Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J Virol 2002, 76:1626–1631.

    Article  PubMed  CAS  Google Scholar 

  79. Sol-Foulon N, Moris A, Nobile C, et al.: HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 2002, 16:145–155. This important study of HIV pathogenesis characterizes Nef activity in endocytic pathways as upregulating DC-SIGN expression on dendritic cells. This increases HIV transmission from dendritic cells to T cells in cell culture, defining a new mechanism potentially used by Nef to accelerate viral pathogenesis in vivo.

    Article  PubMed  CAS  Google Scholar 

  80. Renkema GH, Saksela K: Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci 2000, 5:D268-D283.

    Article  PubMed  CAS  Google Scholar 

  81. Choe EY, Schoenberger ES, Groopman JE, Park IW: HIV Nef inhibits T cell migration. J Biol Chem 2002, 277:46079–46084.

    Article  PubMed  CAS  Google Scholar 

  82. Fackler OT, Baur AS: Live and let die: Nef functions beyond HIV replication. Immunity 2002, 16:493–497.

    Article  PubMed  CAS  Google Scholar 

  83. Baur AS, Sawai ET, Dazin P, et al.: HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1994, 1:373–384.

    Article  PubMed  CAS  Google Scholar 

  84. Liu X, Schrager JA, Lange GD, Marsh JW: HIV Nef-mediated cellular phenotypes are differentially expressed as a function of intracellular Nef concentrations. J Biol Chem 2001, 276:32763–32770.

    Article  PubMed  CAS  Google Scholar 

  85. Schrager JA, Der Minassian V, Marsh JW: HIV Nef increases T cell ERK MAP kinase activity. J Biol Chem 2002, 277:6137–6142.

    Article  PubMed  CAS  Google Scholar 

  86. Greenway AL, McPhee DA, Allen K, et al.: Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol 2002, 76:2692–2702.

    Article  PubMed  CAS  Google Scholar 

  87. Varin A, Manna SK, Quivy V, et al.: Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J Biol Chem 2003, 278:2219–2227.

    Article  PubMed  CAS  Google Scholar 

  88. Miller MD, Warmerdam MT, Page KA, et al.: Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry. J Virol 1995, 69:579–584.

    PubMed  CAS  Google Scholar 

  89. Aiken C, Trono D: Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 1995, 69:5048–5056.

    PubMed  CAS  Google Scholar 

  90. Chazal N, Singer G, Aiken C, et al.: Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J Virol 2001, 75:4014–4018.

    Article  PubMed  CAS  Google Scholar 

  91. Dorfman T, Popova E, Pizzato M, Gottlinger HG: Nef enhances human immunodeficiency virus type 1 infectivity in the absence of matrix. J Virol 2002, 76:6857–6862.

    Article  PubMed  Google Scholar 

  92. Papkalla A, Munch J, Otto C, Kirchhoff F: Nef enhances human immunodeficiency virus type 1 infectivity and replication independently of viral coreceptor tropism. J Virol 2002, 76:8455–8459.

    Article  PubMed  CAS  Google Scholar 

  93. Zhou J, Aiken C: Nef enhances human immunodeficiency virus type 1 infectivity resulting from intervirion fusion: evidence supporting a role for Nef at the virion envelope. J Virol 2001, 75:5851–5859.

    Article  PubMed  CAS  Google Scholar 

  94. Goldsmith MA, Warmerdam MT, Atchison RE, et al.: Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J Virol 1995, 69:4112–4121.

    PubMed  CAS  Google Scholar 

  95. Saksela K, Cheng G, Baltimore D: Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 1995, 14:484–491.

    PubMed  CAS  Google Scholar 

  96. Kestler HW 3rd, Ringler DJ, Mori K, et al.: Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 1991, 65:651–662.

    Article  PubMed  CAS  Google Scholar 

  97. Chakrabarti LA, Metzner KJ, Ivanovic T, et al.: A truncated form of Nef selected during pathogenic reversion of simian immunodeficiency virus SIVmac239Deltanef increases viral replication. J Virol 2003, 77:1245–1256.

    Article  PubMed  CAS  Google Scholar 

  98. Birch MR, Learmont JC, Dyer WB, et al.: An examination of signs of disease progression in survivors of the Sydney Blood Bank Cohort (SBBC). J Clin Virol 2001, 22:263–270.

    Article  PubMed  CAS  Google Scholar 

  99. Goff SP:Death by deamination: a novel host restriction system for HIV-1. Cell 2003 114:281–283.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.L., Hope, T.J. Recent insights into HIV accessory proteins. Curr Infect Dis Rep 5, 439–450 (2003). https://doi.org/10.1007/s11908-003-0024-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-003-0024-8

Keywords

Navigation