Skip to main content

Advertisement

Log in

Consequences of climate change on flax fiber in Normandy by 2100: prospective bioclimatic simulation based on data from the ALADIN-Climate and WRF regional models

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Normandy is the world’s leading producer of flax fiber (Linum usitatissimu L.), which is mainly exported to China for textile manufacturing. Flax is a plant that is cultivated in spring and that grows in an oceanic climate with regular watering and limited thermal excesses. This article aims at projecting the impact of climate change on the phenology of this plant when subjected to climatic hazards that may occur during its development. These projections use two regional climate models (ALADIN-Climate and WRF) based on the two scenarios generated by the latest IPPC report—intergovernmental panel on climate change—(RCP 4.5 and RCP 8.5). The rise in temperatures would result in a time-cycle reduction. Consequently, flax would not be exposed to the early summer water shortage. However, thermal conditions could be unfavorable, especially due to the increased frequency of heat days. Flax is also exposed to the risk of lodging during heavy rainfall episodes; however, the results are somehow contrasted between the two climate models used. This research demonstrates the interest of multidisciplinary impact studies so as to anticipate the consequences of climate change on agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No new data were created or analyzed in this study. The model simulation outputs that support the findings of this study are available from the corresponding author upon reasonable request. The original data are available free of charge on the website http://www.drias-climat.fr/.

Code availability

This study does not use a specific calculation code.

Notes

  1. The number of areas devoted to flax cultivation has increased by 96% between 2000 and 2018, from 33,030 ha to 64,810 ha according to the Agreste processed data for Normandy.

  2. Flax is planted every 6 to 7 years to avoid soil depletion and prevent diseases. This rotation crop is considered the most significant one and leads to higher yields of the following crops by 20 to 30% (according to the European Flax and Hemp Confederation (CELC, 2012).

  3. Commission of the European Communities.

  4. The Plaine de Caen, with 34,000 tons produced each year, is one of the agricultural plains of Normandy that is specialized in the cultivation of spring flax fiber and has three scutching plants (Preux et al. 2020).

  5. In France, the advised periods for sowing ranges from March 15th to April 15th for a soil temperature of between 7 and 9 °C (Sultana 1983).

  6. Although the calculations are made on a daily time step basis, the interpretation of the water balance is made on the scale of the phenological periods.

  7. Potential evapotranspiration calculated on the basis of Thornthwaite’s formula, based on temperature and latitude, is considered representative in the wet temperate zone and therefore for northwestern France (Lecarpentier 1975; personal communication by V. Dubreuil). Indeed, the global solar radiation, which is useful for the calculation of the TURC potential evapotranspiration, a more precise method, is not available at the end of the IPSL-2014 simulation.

  8. The calculation of the useful water reserve corresponds to the following formula (Baize 2000) for each soil horizon:

    UWR (mm) = (pF 2.0 − pF 4.2) × Da × thickness.

    With UWR = useful water reserve (in mm); pF 2.0 = field capacity and pF 4.2 = wilting point; DA = soil bulk density and E = horizon thickness (in cm). Soil matrix potentials are determined by means of a membrane presser by the INRA unit in Orleans.

  9. At the same time, we assessed soil texture using Robinson’s pipette method by plotting the results on the Jamagne (1977) diagram. When applying the pedotransfer rules (Bouma 1989), the useful water reserve is 185 mm.

  10. Water comfort corresponds to the ratio of actual evapotranspiration to maximum plant evapotranspiration.

  11. The retting takes place after the flax is pulled out. The stems are spread out on the ground for 5 to 8 weeks. The alternation of rain and sunshine, i.e., wet then dry and hot periods, allows the development of micro-organisms (fungi and molds) that “more or less completely destroy the intermediate lamella that connects the fibrous bundles together, thus allowing the bundles to separate and divide into technical fibers” (Charlet 2008). This step is necessary to then extract the fiber.

References

  • Allen R. G, Pereira L. S, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO Rome, 300 p. http://www.fao.org/3/X0490E/X0490E00.htm

  • Arvalis L’Institut du végétal (2015) Le Lin : critères de choix des variétés et stratégies de protection. Journées agriculteurs Basse-Normandie 8 décembre 2015, 37 diapositives. https://www.evenements-arvalis.fr/reunion-agriculteurs-le-8-decembre-2015-saint-pierre-sur-dives-14--@/_plugins/WMS_BO_Gallery/page/getElementStream.html?id=36524&prop=file

  • Baize D (2000) Guide des analyses en pédologie : choix, expression, présentation, interprétation. INRA, Paris, p 254

    Google Scholar 

  • Beauvais F, Cantat O, Madeline P (2019a). Changement climatique et céréaliculture en Normandie : quelles perspectives pour 2100 ? Actes du 32ème colloque de l’Association Internationale de Climatologie, Thessalonique, pp 71–76. http://www.climato.be/aic/colloques/actes/Thessaloniki2019_actes.pdf

  • Beauvais F, Cantat O, Madeline P, Le Gouee P, Brunel-Muguet S, Medjkane M (2019b) Quelles conséquences du Changement climatique sur le blé tendre en Normandie aux horizons 2050 et 2100 ? Etude d’impact prospective à partir du modèle ALADIN-Climat. Climatologie 16:129–158

    Article  Google Scholar 

  • Beauvais F, Cantat O, Le Gouee P, Brunel-Muguet S, Madeline P, Gaillard H, Bataille M-P, Sallent A, Preux T, Medjkane M (2020) Conséquences du changement climatique sur le lin fibre en Normandie à l’horizon 2100: simulation bioclimatique prospective à partir des données CNRM-2014 et IPSL-2014. Actes du 33ème colloque de l’Association Internationale de Climatologie, Rennes, pp 97–102. http://www.climato.be/aic/colloques/actes/Rennes2020_actes.pdf

  • Beauvais F (2016). Changement climatique et agriculture : quelles vulnérabilités et représentations d’un élément de forçage des agrosystèmes ? L’exemple de la Plaine de Caen dans ses dimensions écologiques et anthropiques. Mémoire de Master 1, Université de Caen Normandie, 253 p.

  • Bert F (2011) Changement climatique : quelles conséquences pour le lin ? Colloque Changement climatique : quelles conséquences et stratégies d’adaptation pour les grandes cultures. https://www.youtube.com/watch?v=tAPJ0sCCCT8.

  • Biard C.H (2017) Le lin, l’azote et les intercultures. Réunion technique SIAEPA de la Région de Criquetot l’Esneval et le SMBV Pointe de Caux Etretat. Arvalis. 116 diapositives. http://www.smbv-pointedecaux.fr/upload/editeur/presentation_lin-azote_210217_COMPIL.pdf

  • Bonhomme R (2000) Bases and limits to using “degree.day” units. Eur J Agron 13:1–10. https://doi.org/10.1016/S1161-0301(00)00058-7

    Article  Google Scholar 

  • Bonnefoy C, Quenol H, Planchon O, Barbeau G (2010) Températures et indices bioclimatiques dans le vignoble du Val de Loire dans un contexte de changement climatique. EchoGéo, 14 p. https://doi.org/10.4000/echogeo.12146

  • Bouma J (1989). Land qualities in space and time. In Bouma J, Bregt A.K (ed.) On land qualities in space and time, International Society Soil Science Sym. Wageningen, the Netherlands, 22–26 Aug. 1989, Pudoc, Wageningen, pp 3–13.

  • Briche E, Madelin M, Beltrando G, Kergomard C (2010), Analyse comparative des températures extrêmes de 1950 à 2100 issues des modèles ARPEGE-Climat et LMD: intérêt pour l'activité viticole champenoise, Climatologie, Vol.123, N°2, 214–254

  • Cantat O, Le Gouée P, Bensaid A (2009) Le rôle de la topographie et des sols dans la modélisation spatiale d’échelles fines et des bilans hydriques en Normandie. Actes des journées de climatologie du CNFG de la commission Climat et Société, pp 81–100. https://www6.rennes.inra.fr/climaster/content/download/3243/32894/version/1/file/CANTAT-et-al_CNFG-2009_ARTICLE.pdf

  • Cantat O, Le Gouée P, Bensaid A, Savouret E (2010) Une méthode originale de spatialisation d’échelle fine des bilans hydriques. Actes du 23ème colloque de l’Association Internationale de Climatologie, Rennes, pp 101–106. http://www.climato.be/aic/colloques/actes/rennes2010_actes.pdf

  • Cantat O (2005) Dynamique spatio-temporelle d'un événement météo-climatique extrême : La canicule de l'été 2003 en Europe de l'Ouest. Climatologie 2 : 99–136. ⟨hal-00545083). https://doi.org/10.4267/climatologie.908

  • Cantat O (2006). Les "caprices" du climat en Normandie. La variabilité des températures et ses conséquences dans une région " tempérée " non dénuée d'excès. "Les apports du géographe-climatologue". France. 83–104. ⟨hal-00532845⟩.

  • Caubel J, Garcia De Cortazar-Atauri I, Launay M, De Noblet-Doucoudré N, Huard F, Bertuzzi P, Graux AI (2015) Broadening the scope for ecoclimatic indicators to assess crop climate suistability according to ecophysiological, technical and quality criteria. Agric Forest Meteorology 207:94–106

  • Caubel J, Launay M, Ripoche D, Gouache D, Buis S, Huard F, Laurent H, Brun F, Bancal MO (2017) Climate change effects on leaf rust of wheat: Implementing a coupled crop disease model in a French regional application. Europ J Agronomy 90:53–66

  • CCE (2008) Rapport de la commission au parlement européen et au conseil sur le secteur du lin et chanvre, Bruxelles le 25 mai 2008, 11 p. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0307:FIN:FR:PDF

  • CELC (2012) European flax: the creative and innovative green fiber on the future, 20 p https://www.mastersoflinen.com/img/outilsPdfs/argu_dp_ITEN_A3_PRINT_email-1.pdf

  • Charlet K (2008) Contribution à l’étude de composites unidirectionnels renforcés par des fibers de lin: relation entre la microstructure de la fiber et ses propriétés mécaniques. Université de Caen, Thèse de doctorat, p 182

    Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Global Planet Change 57:16–26. https://doi.org/10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE-IFS atmosphere model: a contribution to the French community climate modelling. Climate Dynamics 10 :249–266. https://link.springer.com/article/10.1007%2FBF00208992

  • Doorenbos J, Pruitt W. O (1975) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome, 154 p. http://www.fao.org/3/a-f2430e.pdf

  • DREAL (2014) Profil Environnemental de Basse Normandie. Partie climat, 80 p. http://webissimo.developpementdurable.gouv.fr/IMG/pdf/PartieClimat_v45_Web_200dpi_cle2c31a9.pdf-

  • DREAL Normandie (2020) Le climat en Normandie. Profil environnemental, Caen, 94 p

  • Dubreuil V, Même K, Bonnardot V, Aubert J.-F, Verger A. C, Melec D (2019) Changement climatique et date de floraison des pommiers dans le Val de Rance (Bretagne). Actes du 32ème colloque de l’Association Internationale de Climatologie, Thessalonique, pp 83–88. http://www.climato.be/aic/colloques/actes/Thessaloniki2019_actes.pdf

  • Dufresne JL (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. https://doi.org/10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Durand R (1969) Signification et portée des sommes de températures. Bulletin Technique D’information - Ministère De L’agriculture 238:185–190

    Google Scholar 

  • Gate P, Blondot A, Gouache D, Deudon O, Vignier L (2008) Impacts du changement climatique sur la croissance et le développement du blé en France. Quelles solutions et quelles actions à développer ? Oilseeds fats Crops Lipids J 15(5):332–336. https://doi.org/10.1684/ocl.2008.0221

    Article  Google Scholar 

  • Gate P, Deudon O (2018) Flax crop production and climate change: from diagnosis to solutions for the future, Paris, conference, october 18, 2018

  • Gouache D, Le Bris X, Bogard M, Deudon O, Pagé C, Gate P (2012) Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. Europ J Agronomy 39:62–70. https://doi.org/10.1016/j.eja.2012.01.009

    Article  Google Scholar 

  • Goudenhooft C, Bourmaud A, Baley C (2019) Flax (Linum usitatissimum L.) Fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Front Plant Sci 10:1–23. https://doi.org/10.3389/fpls.2019.00411

    Article  Google Scholar 

  • Holzkämper A, Calanca P, Fuhrer J (2011) Analyzing climate effects on agriculture in time and space. Procedia Environ Sci 3:58–62. https://doi.org/10.1016/j.proenv.2011.02.011

    Article  Google Scholar 

  • Holzkämper A, Calanca P, Fuhrer J (2013) Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach. Agric for Meteorol 168:149–159. https://doi.org/10.1016/j.agrformet.2012.09.004

    Article  Google Scholar 

  • Holzkämper A, Fossati D, Hiltbrunner J, Fuhrer J (2015) Spatial and temporal trends in agro-climatic limitations to production potentials for grain maize and winter wheat in Switzerland. Reg Environ Change 15:109–122. https://doi.org/10.1007/s10113-014-0627-7

    Article  Google Scholar 

  • IPCC (2014) Synthesis Report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R. K, Meyer L. A. (eds.)], Genève, IPCC, 151 p. https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

  • JaJamagneckson RB, Le Quéré C, Andrew RM, Canadell J.-G, Korsbakken J.-I , Liu Z, Peters G.-P, Zheng B, Friedlingstein P (2019) Global energy growth is outpacing decarbonization. A special report for the United Nations Climate Action Summit September 2019. Global Carbon Project, International Project Office, Canberra Australia, 12 p.

  • Jamagne M, Betremieux R, Begon J-C, Mori A (1977) Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols. Bulletin Technique D’information 324–325:627–664

    Google Scholar 

  • Jolivet C, Aalmeida Falcon J.-L, Berche P, Boulonne L, Fontaine M, Gouny L, Lehmann S, Maitre B, Ratié C, Schellenberger E, Soler-Dominguez N (2018) Manuel du Réseau de Mesures de la Qualité des Sols (RMQS). RMQS2 : deuxième campagne métropolitaine 2016–2027, INRA, 150 p.

  • Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M, Wavresky P (2010) Les types de climatsen France, une construction spatiale. Cybergéo, article 501 https://doi.org/10.4000/cybergeo.23155

  • Lamy C, Cantat O, Le Gouée P, Dubreuil V, Bensaid A, Lemercier B, Savouret E (2012) Sécheresse et réserve en eau des sols. In: Mérot P, Dubreuil V, Delahaye D, Desnos P (eds) Changement climatique dans l’Ouest : évaluation, impacts, perceptions. Presses Universitaires de Rennes, Rennes, pp 195–215

    Google Scholar 

  • Lecarpentier C (1975) L’évapotranspiration potentielle et ses implications géographiques. Annales De Géographie 463:257–274. https://doi.org/10.3406/geo.1975.19812

    Article  Google Scholar 

  • Le Gouée P, Marie M, Cantat O, Bensaid A (2010b) Quand le géographe fait du sol une interface essentielle entre agriculture durable, société et environnement. Exemple de deux études de cas traitées en Basse-Normandie (France). ISDA, 28–30 juin 2010, 10 p. https://hal.archives-ouvertes.fr/hal-00521286/document

  • Le Gouée P, Cantat O, Bensaid A, Savouret E (2010a) La sensibilité des systèmes de production agricole en Normandie face au changement climatique. Actes du 23ème colloque de l’Association Internationale de Climatologie, Rennes, pp 333–336. http://www.climato.be/aic/colloques/actes/rennes2010_actes.pdf

  • Le Gouée P, Delahaye D (2008). Modélisation et cartographie de l’aléa érosion des sols et des espaces de ruissellement dans le Calvados. Université de Caen, p 240

  • Madelin M, Bois B, Chabin J-P (2010) Modification des conditions de maturation du raisin en Bourgogne viticole liée au réchauffement climatique. EchoGéo 14:13. https://doi.org/10.4000/echogeo.12176

    Article  Google Scholar 

  • Ouzeau G, Déqué M, Jouini M, Planton S, Vautard R, [Dir : Jouzel J.] (2014) Le climat de la France au XXIe siècle - Volume 4 - Scénarios régionalisés : édition 2014 pour la métropole et les régions d'outre-mer. Ministère de l'écologie, du développement durable et de l'énergie, 64 p. https://www.ecologique-solidaire.gouv.fr/sites/default/files/ONERC_Climat_France_XXI_Volume_4_VF.pdf

  • Pédelaborde P, 1958. Le climat du Bassin parisien : essai d’une méthode rationnelle de climatologie physique. Paris, Génin, 539 + 232.

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135. https://doi.org/10.2307/2346729

    Article  Google Scholar 

  • Planchon O (1997) Les climats maritimes dans le Monde. Thèse de Doctorat, Presses Universitaires du Septentrion, Villeneuve d’Ascq, p 233

    Google Scholar 

  • Preux T, Beauvais F, Pauchard L (2020) Le système agro-alimentaire des grandes cultures en Plaine de Caen : une déconnexion entre production, transformation et consommation ? Atlas Social de Caen. https://atlas-social-de-caen.fr/index.php?id=390.

  • Preisner M, Kulma A, Wojtasik W, Zuk M, (2014) Flax Fiber in Danny E. Akin, ECT, 5th ed., vol. 11, Russell Research Center, ARS-USDA, pp. 588–623

  • Quintana-Segui P, Le Moigne P, Durand Y, Martin E, Habets E, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-nurface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteor Climatol 47:92–107. https://doi.org/10.1175/2007JAMC1636.1

    Article  Google Scholar 

  • Rezaei EE, Siebert S, Huging H, Ewert F (2018) Climate change effect on wheat phenology depends on cultivar change. Scientific Reports 4891:8. https://doi.org/10.1038/s41598-018-23101-2

    Article  Google Scholar 

  • Skamarock W. C, Klemp J. B, Dudhia J, Gill D. O, Barker D, Duda M. G, … Powers, J. G (2008) A description of the advanced research WRF version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D68S4MVH

  • Spiridonov V, Somot S, Déqué M (2005) ALADIN-Climate: from the origins to present date. ALADIN Newsletter, 4 p. http://www.umr-cnrm.fr/aladin-old/newsletters/news29/N29WEB/SPIRIDONOV.pdf

  • Sultana C (1992) Growing and harvesting of flax in the biology and processing of flax, eds H. Sharma and C. van sumere (Belfast: M Publications), 83–109

  • Sultana C (1983). The cultivation of fiber flax. Outlook Agric 12:104–110. https://doi.org/10.1177/003072708301200301

    Article  Google Scholar 

  • Thorntwaite C, Mather J (1955) The water balance. Centerton, Climatology, 104 p.

  • Trzpit J.-P (1970) Atlas de Normandie. Article de présentation du climat normand, Caen, Association pour l'Atlas de Normandie, 3 planches (texte et cartes sur le climat).

  • Van Vuuren D, Edmonds J, Kainuma M, Riahi K, ThomsonHibbardHurttKramKreyLamarqueMasuiMeinshausenNakicenovicSmithRose AKGCTVJ-FTMNSJSK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Vidal J-P, Martin E, Franchisteguy L, Baillon M, Soubeyroux J-M (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644. https://doi.org/10.1002/joc.2003

    Article  Google Scholar 

  • Vigneau J.-P, (1997) Le climat océanisé de la façade atlantique médiane de l’Europe. In Le climat, l’Eau et les Hommes, ouvrage en l’honneur de Jean Mounier, Presses Universitaires de Rennes, 227–244.

  • Voldoire A, Sanchez-Gomez E, Melia D. S. Y, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M. P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. In presentation and analysis of the IPSL and CNRM climate models used in CMIP5. Climate Dynamics, 40 (9–10) : 2091–2121 https://doi.org/10.1007/s00382-011-1259-y

  • WMO (2019) Greenhouse gas bulletin, 25 novembre 2015, n°15, 8 p.

Download references

Acknowledgements

The authors would like to thank Eric Lemarinier, farmer in Anguerny (Calvados), and his daughter Mélanie for providing an agricultural plot of land that allowed the digging of a soil pit. Thanks to IPSL, CERFACS, and CNRM laboratories for public climate data. We also thank Céline Quint from the “Carré International” (University of Caen) for the English translation. In addition, the authors thank the Normandy region for the funding of a doctoral thesis that contributed to this work.

Author information

Authors and Affiliations

Authors

Contributions

FB performed the study and led the writing. OC and PM led the research. PLG supervised and participated in the sampling protocol for the field soil data. SB-M controlled the phenology simulation. HG and M-PB conducted the laboratory analyses. AS took part in the soil sampling and negotiated with the farmer for the instrumentation. TP took part in the rural geography reflections and the SAFRAN observation data were transmitted by MM. All authors participated in the writing and proofreading and agree with the content of the article.

Corresponding author

Correspondence to François Beauvais.

Ethics declarations

Ethics approval

The authors certify that this study meets the requirements of scientific ethics.

Consent to participate

All authors consent to participate.

Consent to publish

All authors consent to publish.

Funding

Région Normandie

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beauvais, F., Cantat, O., Le Gouée, P. et al. Consequences of climate change on flax fiber in Normandy by 2100: prospective bioclimatic simulation based on data from the ALADIN-Climate and WRF regional models. Theor Appl Climatol 148, 415–426 (2022). https://doi.org/10.1007/s00704-022-03938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-03938-4

Navigation