Climate Dynamics

, Volume 10, Issue 4–5, pp 249–266 | Cite as

The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling

  • M Déqué
  • C Dreveton
  • A Braun
  • D Cariolle


A new atmospheric model has been developed jointly by Météo-France, and the European Centre for Medium-range Weather Forecasts (ECMWF) under the acronyms ARPEGE (action de recherche petite echelle grande echelle, which means research project on small and large scales) and IFS (integrated forecast system). This model includes, inter alia, an atmospheric general circulation model (GCM) which is intended by the French climate modelling community to be used for studying the anthropogenic climate impact. A preliminary version of this model has been available since 1992. This paper describes its main characteristics. Three 10-year integrations of this model having spectral horizontal resolutions of T21, T42, and T79 have been performed using prescribed monthly mean sea surface temperatures (SST) observed from 1979 until 1988. The results of these integrations are presented and compared with the observed climatology. The comparison is made for the winter (DJF) and summer (JJA) periods. It is shown that the model is capable of reproducing the observed climatology in a generally successful manner.


Atmosphere Circulation Model General Circulation Model Horizontal Resolution Weather Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselin RA (1972) Frequency filter for time integration. Mon Weather Rev 100:487–490Google Scholar
  2. Barkstrom BR, Smith GL (1986) The Earth Radiation Budget Experiment: science and implementation. J Geophys Res 24:379–390Google Scholar
  3. Baumgartner A, Mayer H, Mertz W (1977) Weltweite Vergeilung des Rauhigkeits-Parameters ζo mit Anwendung auf die Energiedissipation an der Erdoberfldche. Meteorol Rundsch 30:43–48Google Scholar
  4. Boer G, Arpe K, Blackburn M, Déqué M, Gates WL, Hart TL, Le Trent H, Roeckner E, Sheinin DA, Simmonds I, Smith RNB, Tokioka T, Wetherald RT, Williamson D (1992) Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J Geophys Res 97:12771–12786Google Scholar
  5. Bougeault P (1985) A simple parameterization of the large-scale effects of deep cumulus convection. Mon Weather Rev 113:2108–2121CrossRefGoogle Scholar
  6. Boville BA, Cheng X (1988) Upper boundary effects in a general circulation model. J Atmos Sci 45:2592–2606Google Scholar
  7. Boville BA (1991) Sensitivity of simulated climate to model resolution. J Clim 4:469–485Google Scholar
  8. Cariolle D (1991) The French Community Climate Model: specifications. Available upon request to the author at CNRM 42 Av Coriolis 31057 Toulouse FranceGoogle Scholar
  9. Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91:10825–10846Google Scholar
  10. Cariolle D, Lasserre-Bigorry A, Royer JF, Geleyn JF (1990) A GCM simulation of the springtime antarctic ozone decrease and its impact on midlatitudes. J Geophys Res 95:1883–1898Google Scholar
  11. Cariolle D, Amodei M, Simon P (1992) Dynamics and the ozone distribution in the winter stratosphere: modelling the interhemispheric differences. J Atmos Terr Phys 54:627–640Google Scholar
  12. Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Gahn SJ, Kiehl JT, Lacis AA, Le Trent H, Li ZX, Liang XZ, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95:16001–16615Google Scholar
  13. Clark TL, Peltier WR (1984) Critical level reflection and the resonant growth of nonlinear mountain waves. J Atmos Sci 41:3122–3134Google Scholar
  14. CLIMAP (1981) Seasonal reconstruction of the earth surface at the last glacial maximum. Geological Society of America Map Chart Series MC-36Google Scholar
  15. Clough SA, Franks RAA (1991) The evaporation of frontal and other stratiform precipitation. Q J R Meteorol Soc 117:1057–1080Google Scholar
  16. Courtier P, Geleyn JF (1988) A global numerical weather prediction model with variable resolution: application to the shallow water equations. Q J R Meteorol Soc 114:1321–1346Google Scholar
  17. Courtier P, Freydier C, Geleyn JF, Rabier F, Rochas M (1991) The ARPEGE project at METEO-FRANCE. In: Proc ECMWF Workshop. Numerical methods in atmospheric modelling, 9–13 Sept 1991, vol 2, p 193–231. ECMWF, Shinfield Park, Reading, UKGoogle Scholar
  18. Crutcher HL, Meserve JM (1970) Selected level heights, temperatures and dewpoints for the Northern Hemisphere. US Naval Weather Service, Navair 50-IC-52Google Scholar
  19. Deardorff JW (1977) A parameterization of ground surface moisture content for use in atmospheric prediction models. J Appl Meteorol 16:1182–1185Google Scholar
  20. Dreveton C, Déqué M, Geleyn JF (1993) Interactions of physical parameterizations in the climate version of the ARPEGE/IFS model. Beitr Phys Atmos 66:283–303Google Scholar
  21. Déqué M, Dreveton C, Braun A, Cariolle D (1993) ARPEGE/IFS: the climate version 0. METED-FRANCE/CNRM Techn Note 23Google Scholar
  22. Eliasen E, Machenhauer B, Rasmussen E (1970) On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report of the Institut for Teoretisk Meteorologi 2 (Cobenhaven University): 35 ppGoogle Scholar
  23. Fels SB (1986) Analytic representations of standard atmosphere temperature profiles. J Atmos Sci 43:219–221Google Scholar
  24. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  25. Geleyn JF (1987) Use of a modified Richardson number for parameterizing the effect of shallow convection. J Meteorol Soc Japan Spec NWP Symp Vol: 141–149Google Scholar
  26. Geleyn JF (1988) Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A:347–351Google Scholar
  27. Geleyn JF, Hollingsworth A (1979) An economical analytic method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atmos 52:1–16Google Scholar
  28. Geleyn JF, Preuss HJ (1983) A new dataset of satellite derived surface albedo values for operational use at ECMWF. Arch Meteorol Geophys Bioklimatol, Ser A 32:353–359Google Scholar
  29. Herman JR, Hudson R, McPeters R, Stolarski R, Ahmad Z, Gu XG, Taylor S, Wellemeyer C (1991) A self-calibration method applied to TOMS/SBUV backscattered ultraviolet data to determine long-term global ozone change. J Geophys Res 96:7531–7545Google Scholar
  30. Jenne RL, Crutcher HL, van Loon H, Taljaard JJ (1974) A selected climatology of the southern hemisphere: computer method and data availability. NCAR TN/STR 92Google Scholar
  31. Kalnay E, Kanamitsu M, Pfaendtner J, Sela J, Suarez M, Stackpole J, Tuciilo J, Umscheid L, Williamson D (1989) Rules for interchange of physical parameterizations. Bull Am Meteorol Soc 70:620–622Google Scholar
  32. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:111–127Google Scholar
  33. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202Google Scholar
  34. Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the operational PBL-parameterization at ECMWF. In: Pro ECMWF Workshop Planetary boundary layer parameterization, 25–27 November 1981, pp 59–80 ECMWF, Shinfield Park, Reading, UKGoogle Scholar
  35. Mahfouf JF, Cariolle D, Royer JF (1993) Simulation de l'effet d'un doublement du gaz carbonique sur l'ozone stratospherique. CR Acad Sci 316 Serie 11:61–68Google Scholar
  36. McFarlane NA, Boer GJ, Blanchet JP, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044Google Scholar
  37. Miller J, Beljaars ACM, Palmer TN (1992) The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J Clim 5:418–434Google Scholar
  38. Noihlan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549Google Scholar
  39. Orszag SA (1970) Transform method for calculation of vector coupled sums: application to the spectral form of the vorticity equation. J Atmos Sci 27:890–895Google Scholar
  40. Palmer TN, Brankovic C, Molteni F, Tibaldi S (1990) Extended range predictions with ECMWF models: I interannual variability in operational model integrations. Q J R Meteorol Soc 116:799–834Google Scholar
  41. Randel WJ, Williamson DL (1990) A comparison of climate simulated by the NCAR community climate model (CCM1: R15) with ECMWF analyses. J Clim 3:608–633Google Scholar
  42. Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1:75–86CrossRefGoogle Scholar
  43. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  44. Rossow WB, Mosher F, Kinsela E, Arking A, Desbois M, Harrisson E, Minnis P, Ruprecht E, Seze G, Simmer C, Smith E (1985) ISCCP cloud algorithm intercomparison. J Clim Appl Meteorol 24:877–903Google Scholar
  45. Royer JF (1986) Correction of negative mixing ratios in spectral models by global horizontal borrowing. Mon Weather Rev 114:1406–1410Google Scholar
  46. Simmons AJ, Burridge DM (1981) An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinate. Mon Weather Rev 109:758–766Google Scholar
  47. Stephenson DB, Royer IF (1994a) GCM simulation of the Southern Oscillation from 1979–88. Clim Dyn (in press)Google Scholar
  48. Stephenson DB, Royer JF (1994b) Low-frequency variability of TOMS and GCM total ozone stationary waves associated with the El Niño/Southern Oscillation for the period 1979–88. J Geophys Res (in press)Google Scholar
  49. Temperton C (1991) On scalar and vector transform methods for global spectral models. Mon Weather Rev 119:1303–1307Google Scholar
  50. Thépaut JN, Vasiljevic D, Courtier P, Pailleux J (1993) Variational assimilation of conventional meteorological observation with a multilevel primitive equation model. Q J R Meteorol Soc 119:153–186Google Scholar

Copyright information

© Springer-Veriag 1994

Authors and Affiliations

  • M Déqué
    • 1
  • C Dreveton
    • 1
  • A Braun
    • 1
  • D Cariolle
    • 1
  1. 1.Météo-France, Centre National de Recherches MétéorologiquesToulouseFrance

Personalised recommendations