Skip to main content
Log in

Influence of El Niño and La Niña on coffee yield in the main coffee-producing regions of Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract


Coffee is the most consumed beverage and one of the most valuable commodities worldwide. The crop is very sensitive to meteorological elements, mainly at the microclimatic scale, such as solar radiation, air temperature, and precipitation. El Niño and La Niña are atmospheric phenomena characterized by temperature anomalies in tropical areas of the Pacific Ocean, and changing wind and precipitation patterns in tropical and mid-latitude regions. For these reasons, the objective of this study was to evaluate the influence of El Niño and La Niña on Coffea arabica and canephora yields in the states and localities of the main Brazilian coffee-producing regions. We considered the states of Minas Gerais, São Paulo, Paraná, Bahia, Espírito Santo, and Rondônia. The yield data were obtained from 79 localities for the period 2002–2017 from the Brazilian Institute of Geography. Daily mean air temperature and precipitation were obtained from the NASA-POWER platform and the quarterly registry of the value of the ONI index was obtained from the National Oceanic and Atmospheric Administration. El Niño tended to decrease precipitation, and increase temperature and water deficits for all Brazilian coffee regions. Neutral and La Niña years were climatically similar. Climatic elements tended to be less variable and favor high coffee yields during El Niño years at national, regional, and local scales. The yield increase occurred because the hottest days of EN happen in the first quarter of the phenological cycle, when the crop is normally in the vegetative phase, favoring the generation of new branches. The highest historical yields were generally correlated with the occurrence of El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams RM, Houston LL, McCarl BA, Mario Tiscareño LM, Matus GJ, Weiher RF (2003) The benefits to Mexican agriculture of an El Niño-Southern Oscillation (ENSO) early warning system. Agricultural and Forest Meteorology 115:183–194

    Google Scholar 

  • Alves MB, Souza EB, Repelli CA, Vitorino MI, Ferreira NS (1997) Episódios de La Niña na bacia do oceano pacífico e equatorial e a distribuição sazonal e intra-sazonal das chuvas no setor norte do nordeste brasileiro. Revista Brasileira de Meteorologia 12(1):63–76

    Google Scholar 

  • Aparecido LEO, Rolim GS (2018) Forecasting of the annual yield of Arabic coffee using water deficiency. Pesq Agrop Brasileira 53(12):1299–1310

    Google Scholar 

  • Aparecido LEO, Rolim GS, Souza PS (2014) Flowering and harvest ing periods of macadamia-walnut for areas of the southeastern coffee region. Rev Bras Frutic 36:165–173

    Google Scholar 

  • Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, Läderach P, Anzueto F, Hruska AJ, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Security 7(2):303–321

    Google Scholar 

  • Bai J, Chen X, Dobermman A, Yang H, Cassman KG, Zhang F (2010) Evaluation of NASA satellite- and model-derived weather data for simulation of maize yield potential in China. Agron J 102(1):9–16

    Google Scholar 

  • Barnston AG, Tippett MK, L'Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651

    Google Scholar 

  • Bastianin A, Lanza A, Manera M (2018) Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market. Agric Econ 1:3–17

    Google Scholar 

  • Berlato MA, Farenzena H, Fontana DC (2005) Associação entre El Niño Oscilação Sul e a produtividade do milho no Estado do Rio Grande do Sul. Pesq Agrop Brasileira 40(5):423–432

    Google Scholar 

  • Café de Colombia (2014) Our coffee regions. Retrieved from: <http://www.cafedecolombia.com>

  • Camargo AP (1971) Balanço hídrico no Estado de São Paulo. 3.ed. Campinas: Instituto Agronômico. 24p. (Boletim, 116)

  • Camargo AP (1985) Florescimento e frutificação de café arábica nas diferentes regiões cafeeiras do Brasil. Pesq Agrop Brasileira 20(7):831–839

    Google Scholar 

  • Camargo MBP (2010) The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia. 69:239–247

    Google Scholar 

  • Camargo AP, Camargo MBP (2001) Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia. 60(1):65–68

    Google Scholar 

  • Carmona LC, Berlato MA (2002) El Niño e La Niña e a produtividade do arroz irrigado no Estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia. 10(1):147–152

    Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature. 428(6984):733–736

    Google Scholar 

  • Chimeli A, Souza Filho F, Holanda M, Petterini F (2008) Forecasting the impacts of climate variability: lessons from the rainfed corn market in Ceará. Brazil Environment and Development Economics 13(2):201–227

    Google Scholar 

  • Cirino PH, Féres JG, Braga MJ, Reis E (2015) Assessing the Impacts of ENSO-related weather effects on the Brazilian Agriculture. Procedia Economics and Finance 24:146–155

    Google Scholar 

  • Climate Prediction Center – CPC (2012) Frequently asked questions about El Niño and La Niña. Retrieved from:<https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#forecasts>

  • Companhia Nacional de Abastecimento – CONAB (2019) Acompanhamento da safra brasileira de café. 6(1)

  • Craparo ACW, Van Asten PJA, Läderach P, Jassogne LTP, Grab SW (2015) Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric For Meteorol 207:1–10

    Google Scholar 

  • Cressey D (2013) Coffee rust regains foothold. Nature. 493-587

  • Cunha DR, Dalmargo GN, Estefanel D, Pasinato A, Moreira MB (2001) El Niño-Oscilação Sul e seus impactos sobre a cultura da cevada no Brasil. Revista Brasileira de Agrometeorologia 9(1):137–1345

    Google Scholar 

  • Damatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crop Res 86:99–114

    Google Scholar 

  • Damatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18(1):55–81

    Google Scholar 

  • Decasy F, Avelino J, Guyot B, Perriot JJ, Pineda C, Cilas C (2003) Qualidade de diferentes cafés hondurenhos em relação a diferentes meio ambientes. J Food Sci 68(7):2356–2361

    Google Scholar 

  • Dineshes KP, Shivanna P, Santa Ram A (2011) Identification of RAPD (random amplified polymorphic DNA) markers for Ethiopian wild Coffea arabica L genetic resources in the tropics. Institute of Integrative Omics and Applied Biotechnology Journal 2(4):1–7

  • Eskes A (2005) Phenotypic expression of resistance to coffee leaf rust and its possible relationship with durability. In: Durable Resistance to Coffee Leaf Rust. Viçosa-MG. Universidade Federal de Viçosa, 305-331

  • Figueroa P, Jimenez OH, Lópes de LE, Anzueto F (2000) Influencia de la variedad y la altitud en las características organolepticas y físicas del café. In: Simpósio Latinoamericano De Cafeicultura, 19., 2000, San José, Costa Rica. Memoria... San José: ICAFE. 493-497

  • Fraser J, Fisher E, Arce A (2014) Reframing ‘crisis’ in fair trade coffee production: trajectories of agrarian change in Nicaragua. J Agrar Chang 14(1):52–73

    Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate Variability in Southern South America associated with El Niño and La Niña events. J Clim 13(1):35–57

    Google Scholar 

  • Hoogenboom G (2000) Contribution of agrometeorology to the simulation of crop production and its applications. Agric For Meteorol 103(1/2):137–157

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística – IBGE. (2018). Sidra: Banco de Tabelas Estatísticas. Retrieved from: <https://sidra.ibge.gov.br>

  • International Coffee Organization – ICO (2019). Coffee trade statistics. Retrieved from: <http://www.ico.org>

  • Júnior RDSN, Sentelhas PC (2019) Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases. Agric Syst 173:254–267

    Google Scholar 

  • Li Y, Yi F, Wang Y, Gudaj R (2019) The Value of El Niño-Southern oscillation forecasts to China’s agriculture. Sustainability. 11(15):4184

    Google Scholar 

  • Mcphee J, Margulis SA (2005) Validation and error characterization of the GPCP-1DD precipitation product over the contiguous United States. J Hydrometeorol 6:441–459

    Google Scholar 

  • Meireles EJL, Camargo MBP, Pezzopane JRM, Thomaziello RA, Fahl JI, Bardin L, Santos JCF, Japiassú LB, Garcia AWR, Miguel AE, Ferreira RA (2009) Fenologia do cafeeiro: condições agrometeorológicas e balanço hídrico do ano agrícola 2004-2005. Brasília: Embrapa Café; MAPA 5:130

    Google Scholar 

  • Miao R, Khanna M, Huang H (2016) Responsiveness of crop yield and acreage to prices and climate. American Journal of Agricultural Economics 98:191–211

    Google Scholar 

  • Moeletsi ME, Walker S (2012) Evaluation of NASA satellite and modelled temperature data for simulating maize water requirement satisfaction index in the Free State Province of South Africa. Physics and Chemistry of the Earth, Parts A/B/C 50-52:157–164

    Google Scholar 

  • Phillips J, Cane M, Rosenzweig C (1998) ENSO, Seasonal rainfall patterns and simulated maize yield variability in Zimbabwe Agricultural and Forest Meteorology 90:39–50

    Google Scholar 

  • Phillips J, Rajagopalan B, Cane M, Rosenzweig C (1999) The role of ENSO in determining climate and maize yield variability in the US cornbelt. International Journal of Climatology 19:877–888

    Google Scholar 

  • Pinault JL (2016) Anticipation of ENSO: What teach us the resonantly forced baroclinic waves. Geophysical & Astrophysical Fluid Dynamics 110(6):518–528

    Google Scholar 

  • Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla RI (2001) Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour Res 37(8):2169–2178

    Google Scholar 

  • Prela AP, Pereira AR, Caramori PH (2005) Influência dos fenômenos El Niño/La Niña na produtividade de trigo no estado do Paraná. Revista Brasileira de Agrometeorologia. 13(3):341–342

    Google Scholar 

  • Rena AB, Maestri M (1986) Coffee Physiology. In: A.B. Rena et al. (guest eds) Cultura do cafeeiro: fatores que afetam a produtividade. Piracicaba, SP: POTAFOS. pp. 447.

  • Rendón EPD, Builes VHR, Quiñones AJP (2015) Variabilidad espacial y temporal de la temperatura del aire en la zona cafetera colombiana. Investigaciones Geográficas. Boletín 89

  • Rodrigues WN, Tomaz MA, Ferrão RG, Ferrão MAG, Fonseca AFA (2013) Crop yield bienniality in groups of genotypes of conilon coffee. Afr J Agric Res 8:4422–4426

    Google Scholar 

  • Serrano CEB, Castrillón JJC (2002) Influência de la latitude en la calidad de la bebida de muestras del café procedente del ecotopo 206 B en Colombia. Cenicafé. 53(2):119–131

    Google Scholar 

  • Silva CA, Teodoro REF, Melo B (2008) Produtividade e rendimento do cafeeiro submetido a lâminas de irrigação. Pesq Agrop Brasileira 43:387–394

    Google Scholar 

  • Smith AW (1989) Introduction. In: Clarke RJ, Macrae R (eds), Coffee – Chemistry.1:1-41

  • Souza Júnior JA, Nechet D, Oliveira MCF, Albuquerque MF (2009) Estudo do comportamento da temperatura e precipitação nos períodos chuvosos e menos chuvosos em Belém-PA em anos de fortes eventos de El Niño e La Niña. Revista Brasileira de Climatologia 5:87–101

    Google Scholar 

  • Stackhouse PW, Zhang T, Westberg D, Barnett AJ, Bristow T, Macpherson B, Hoell JM (2018) Power release 8.0.1 (with GIS applications) methodology (Data parameters, sources & validation). Retrieved from <https://power.larc.nasa.gov/documents/POWER_Data_v9_methodology.pdf>

  • Syvertsen JP, Garcia-Sanchez F (2014) Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103:128–137

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Centerton: Drexel Institute of Technology. Climatology 8(1):104

    Google Scholar 

  • Ubilava D, Abdolrahimi M (2019) The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environ Res Lett 14(5):054008

    Google Scholar 

  • Westberg D, Soja A, Stackhouse JRPW (2010) Linking satellite-derived fire counts to satellite-derived weather data in fire prediction models to forecast extreme fires in Siberia. Geophys Res Abstr 12:2010–5597

    Google Scholar 

  • White JF, Hoogenboom G, Stackhouse JRPW, Hoell JM (2008) Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US. Agric For Meteorol 148:1574–1584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karita Almeida Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida Silva, K., de Souza Rolim, G., Borges Valeriano, T.T. et al. Influence of El Niño and La Niña on coffee yield in the main coffee-producing regions of Brazil. Theor Appl Climatol 139, 1019–1029 (2020). https://doi.org/10.1007/s00704-019-03039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-03039-9

Keywords

Navigation