Skip to main content
Log in

Agricultural zoning of Coffea arabica in Brazil for current and future climate scenarios: implications for the coffee industry

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Coffee is an important crop in the global market, being produced in several countries, such as Brazil, Vietnam, Colombia, Ethiopia, and India. Brazil is the world’s largest producer (1.5 million ha), playing an important role in generating jobs and income, especially for family farmers. Coffee is very susceptible to climate and may have high or low yields depending on air temperature and rainfall during the production cycle. Thus, this study aimed to carry out climate zoning for the cultivation of Arabian coffee under different climate change scenarios recommended by IPCC to measure the future impact of climate on Brazilian coffee. The study was carried out for the entire Brazilian territory, using data on annual mean air temperature, mean air temperature of November, mean air temperature of the coldest month, and cumulative annual mean water deficit obtained from the Meteorological Database for Teaching and Research (BDMEP) of the National Institute of Meteorology of Brazil—INMET, covering the period 1960–2020. Moreover, the BCC–CSM 1.1 climate model, with a resolution of 125 × 125 km, collected from the WorldClim 2 platform for 2041 to 2080, using the Representative Concentration Pathway (RCP) 2.6, 4.5, 6.0, and 8.5 scenarios, was employed to obtain future climate data. Brazil has well-defined regional seasons, normally with a hot, humid summer and a cold, dry winter. The country showed great climate variability among regions, with the Northeast region showing the highest values for air temperature and water deficit, the North region concentrating the lowest values of water deficit, and the South region showing the lowest air temperatures. All future climate change scenarios showed a reduction in the total areas suitable for coffee cultivation in Brazil, with a mean reduction of 50%. Furthermore, areas with restrictions due to thermal excess and water deficiency were the most common throughout the country in future scenarios, with a mean of 63% of the entire territory. The most affected regions were Minas Gerais, São Paulo, and Paraná. Future climate changes may negatively affect coffee cultivation in all the studied RCP scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Aparecido et al. (2020)

Fig. 5

Adapted from Camargo (1977), Matiello (1991), and Camargo and Pereira (1994)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

The data/material are opened.

Code availability

The software used was python and scripts are available.

References

  • Ababaei, B., & Najeeb, U. (2020). Detection of major weather patterns reduces number of simulations in climate impact studies. Journal of Agronomy and Crop Science, 206(3), 376–389.

    Article  Google Scholar 

  • Abbas, S., et al. (2022). Land-use change impacts on soil and vegetation attributes in the Kanshi River basin, Potohar Plateau, Pakistan. Land Degradation & Development, 33(15), 2649–2662.

    Article  Google Scholar 

  • Abbas, S; Dastgeer, G. Analysing the impacts of climate variability on the yield of Kharif rice over Punjab, Pakistan. In Natural resources forum. Oxford, UK: Blackwell Publishing Ltd, 2021. p. 329–349.

  • Agbo, E. P. et al. (2021). Solar energy: A panacea for the electricity generation crisis in Nigeria. Heliyon, 7(5).

  • Agbo, E. P., & Edet, C. O. (2022). Meteorological analysis of the relationship between climatic parameters: Understanding the dynamics of the troposphere. Theoretical and Applied Climatology, 150(3–4), 1677–1698.

    Article  Google Scholar 

  • Andrade, H. J., & Zapata, P. C. (2019). Mitigation of climate change of coffee production systems in Cundinamarca, Colombia. Floresta e Ambiente, 26(3).

  • Assad, E., et al. (2001). Agroclimatic zoning for Coffee (Coffea arabica L.) in the state of Goiás and southeastern state of Bahia Brazil. Rev Bras Agrometeorol, 9(3), 510–518.

    Google Scholar 

  • Assad, E. D., et al. (2004). Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira, 39(11), 1057–1064.

    Article  Google Scholar 

  • Bohl, M. T., Gross, C., & Souza, W. (2019). The role of emerging economies in the global price formation process of commodities: Evidence from Brazilian and US coffee markets. International Review of Economics & Finance, 60, 203–215.

    Article  Google Scholar 

  • Boreux, V., et al. (2016). Agroforestry coffee production increased by native shade trees, irrigation, and liming. Agronomy for Sustainable Development, 36(3), 42.

    Article  Google Scholar 

  • Bunn, C., et al. (2015). A bitter cup: Climate change profile of global production of arabica and robusta coffee. Climatic Change, 129(1), 89–101.

    Article  Google Scholar 

  • Cabré, F., & Nuñez, M. (2020). Impacts of climate change on viticulture in Argentina. Regional Environmental Change, 20(1), 12.

    Article  Google Scholar 

  • Cai, R., et al. (2016). Climate variability and international migration: The importance of the agricultural linkage. Journal of Environmental Economics and Management, 79, 135–151.

    Article  Google Scholar 

  • Camargo, Â. P. D., & Camargo, M. B. P. D. (2001). Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia, 60(1), 65–68.

    Article  Google Scholar 

  • Camargo, A. De. (1977). Zoneamento de aptidão climática para a cafeicultura de arábica e robusta no Brasil. Fundação IBGE, Recursos, meio ambiente e poluição, p. 68–76.

  • Camargo, A., & De; Pereira, A. (1994). Agrometeorology of the coffee crop. Geneva: World Meteorological Organization.

    Google Scholar 

  • Caramori, P., et al. (2001). Climatic risk zoning for coffee (Coffea arabica L.) in Paraná state Brazil. Revista Brasileira de Agrometeorologia, 9(3), 486–494.

    Google Scholar 

  • Carleton, T. A., & Hsiang, S. M. (2016). Social and economic impacts of climate. Science (New York NY), 353, 6304.

    Article  Google Scholar 

  • Carr, M. K. V. (2001). The water relations and irrigation requirements of coffee. Experimental Agriculture, 37(1), 1–36.

    Article  Google Scholar 

  • Carvalho, C. F., Carvalho, S. M., & Souza, B. (2019). Coffee. In B. Souza, L. L. Vázquez, & R. C. Marucci (Eds.), Natural enemies of insect pests in neotropical agroecosystems (pp. 277–291). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Carvalho, H. P De., et al. (2011). Bioclimatic indices for the coffee crop. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(6), 601–606.

    Article  Google Scholar 

  • Castro, F. D., S., et al. (2010). Avaliação do desempenho dos diferentes métodos de interpoladores para parâmetros do balanço hídrico climatológico. Revista Brasileira De Engenharia Agrícola e Ambiental, 14(8), 871–880.

    Article  Google Scholar 

  • Cecílio, R. A., et al. (2012). Método para a espacialização dos elementos do balanço hídrico climatológico. Pesquisa Agropecuária Brasileira, 47(4), 478–488.

    Article  Google Scholar 

  • Chengappa, P. G., Devika, C. M., & Rudragouda, C. S. (2017). Climate variability and mitigation: Perceptions and strategies adopted by traditional coffee growers in India. Climate and Development, 9(7), 593–604.

    Article  Google Scholar 

  • Christmas, M. J., Breed, M. F., & Lowe, A. J. (2016). Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 17(2), 305–320.

    Article  CAS  Google Scholar 

  • Clemente-Moreno, M. J., et al. (2020). Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. New Phytologist, 225(2), 754–768.

    Article  CAS  Google Scholar 

  • Crawley, S., Coffé, H., & Chapman, R. (2020). Public opinion on climate change: Belief and concern, issue salience and support for government action. The British Journal of Politics and International Relations, 22(1), 102–121.

    Article  Google Scholar 

  • Crawley, S., Coffé, H., & Chapman, R. (2022). Climate belief and issue salience: comparing two dimensions of public opinion on climate change in the EU. Social Indicators Research, 162(1), 307–325.

    Article  Google Scholar 

  • Crisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127–139.

    Article  CAS  Google Scholar 

  • Damatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1), 55–81.

    Article  CAS  Google Scholar 

  • De Camargo, M. B. P. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69(1), 239–247.

    Article  Google Scholar 

  • de Oliveira Aparecido, L. E., de Souza Rolim, G., & de Souza, P. S. (2015). Sensitivity of newly transplanted coffee plants to climatic conditions at altitudes of Minas Gerais, Brazil. Australian Journal of Crop Science, 9(2), 160–167.

    Google Scholar 

  • de Simões, R. O., et al. (2020). Sensory characterization of coffee (Coffea arabica L.) Harvested in different percentages of the cherry maturation stage/Caracterização sensorial do café (Coffea arábica L.) colhido em diferentes percentagens do estádio de maturação cereja. Brazilian Journal of Development, 6(4), 19825–19836.

    Article  Google Scholar 

  • Falamarzi, Y., et al. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agricultural Water Management, 140, 26–36.

    Article  Google Scholar 

  • Farias, J. R. B., et al. (2001). Caracterização de risco de déficit hídrico nas regiões produtoras de soja no Brasil. Revista Brasileira De Agrometeorologia, 9(3), 415–421.

    Google Scholar 

  • Fernandes, A. L. T., et al. (2012). A moderna cafeicultura dos cerrados brasileiros. Pesquisa Agropecuária Tropical, 42(2), 231–240.

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

    Article  Google Scholar 

  • Flato, G. et al. Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [s.l.] Cambridge University Press, 2014. p. 741–866.

  • Hajjar, R., et al. (2019). Scaling up sustainability in commodity agriculture: Transferability of governance mechanisms across the coffee and cattle sectors in Brazil. Journal of Cleaner Production, 206, 124–132.

    Article  Google Scholar 

  • Halder, D., et al. (2020). Assessment of future climate variability and potential adaptation strategies on yield of peanut and Kharif rice in eastern India. Theoretical and Applied Climatology, 140(3), 823–838.

    Article  Google Scholar 

  • Huang, W., et al. (2020). Impact of seasonal and temperature-dependent variation in root defense metabolites on herbivore preference in Taraxacum Officinale. Journal of Chemical Ecology, 46(1), 63–75.

    Article  CAS  Google Scholar 

  • IBGE. (2018). Sistema IBGE de Recuperação Automática - SIDRA: Produção Agrícola Municipal. Disponível em: https://sidra.ibge.gov.br/home/pnadcm. Acesso em: 28 maio. 2020.

  • ICO. (2022). International Coffee Organization - Historical Data On The Global Coffee Trade. Disponível Em: http://www.ico.org/new_historical.asp. Acesso Em: 18 Jun. 2022.

  • Immerzeel, W. W., et al. (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364–369.

    Article  CAS  Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel On Climate Change.

  • IPCC. (2018). Global warming of 1.5°c, summary for policymakers. contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change.

  • Jödicke, K., et al. (2020). The influence of process parameters on the quality of dried agricultural products determined using the cumulated thermal load. Drying Technology, 38(3), 321–332.

    Article  Google Scholar 

  • Kobiv, Y. (2017). Response of rare alpine plant species to climate change in the Ukrainian Carpathians. Folia Geobotanica, 52(2), 217–226.

    Article  Google Scholar 

  • Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the US great plains agricultural production. Scientific Reports, 8(1), 3450.

    Article  Google Scholar 

  • Levy, O., et al. (2019). Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecological Monographs, 89(1), e01334.

    Article  Google Scholar 

  • Liberato, A. M., & Brito, J. (2010). Influência de mudanças climáticas no balanço hídrico da Amazônia Ocidental. Revista Brasileira De Geografia Física, 3(3), 170–180.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    Article  CAS  Google Scholar 

  • Mani, M. Et Al. South Asia’s hotspots: The Impact of temperature and precipitation changes On Living Standards. [S.L.] World Bank Publications, 2018.

  • Mani, M. et al. (2018). South Asia's hotspots: The impact of temperature and precipitation changes on living standards. World Bank Publications.

  • Matiello, J. B. (1991). O café: do cultivo ao consumo. [s.l.] Editora Globo São Paulo, 1991.

  • Meinshausen, M., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1–2), 213–241.

    Article  CAS  Google Scholar 

  • Mitidieri, F. J., & Medeiros, J. X. (2008). Zoneamento Agrícola de Risco Climático Ferramenta de auxílio ao seguro rural. Revista De Política Agrícola, 17(4), 33–46.

    Google Scholar 

  • Moreira, T. R., et al. (2021). Global warming and the effects of climate change on coffee production. In L. Louzada Pereira & T. Rizzo Moreira (Eds.), Quality determinants in coffee production. Food engineering series (pp. 65–100). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Muñoz-Rios, L. A., Vargas-Villegas, J., & Suarez, A. (2020). Local perceptions about rural abandonment drivers in the Colombian coffee region: Insights from the city of Manizales. Land Use Policy, 91, 104361.

    Article  Google Scholar 

  • Nabati, J., et al. (2020). GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecological Indicators, 117,

  • Padovan, M. P., et al. (2018). Water loss by transpiration and soil evaporation in coffee shaded by Tabebuia rosea Bertol and Simarouba glauca dc. compared to unshaded coffee in sub-optimal environmental conditions. Agricultural and Forest Meteorology, 248, 1–14.

    Article  Google Scholar 

  • Pereira, A. R., Camargo, Â. P. De., & Camargo, M. B. P. De. (2008). Agrometeorologia de cafezais no Brasil.

  • Pezzopane, J., et al. (2012). Agrometeorologia: aplicações para o Espírito Santo. Alegre, ES: CAUFES.

    Google Scholar 

  • Pham, Y., et al. (2019). The impact of climate change and variability on coffee production: A systematic review. Climatic Change, 156(4), 609–630.

    Article  CAS  Google Scholar 

  • Piedra-Bonilla, E. B., Da Cunha, D. A., & Braga, M. J. (2020). Climate variability and crop diversification in Brazil: An ordered probit analysis. Journal of Cleaner Production, 256,

  • Pinto, H. S., et al. (2001). Zoneamento de riscos climáticos para a cafeicultura do Estado de São Paulo. Revista Brasileira De Agrometeorologia, 9(3), 495–500.

    Google Scholar 

  • Pons, D. et al. (2018). Climate variability and coffee productivity in Southern Guatemala. AGU Fall Meeting Abstracts, 51.

  • Reis, P. R. (2010). Café arábica: do plantio à colheita. [s.l.] Epamig.

  • Rolla, A. L., et al. (2019). Impacts of climate change on bovine livestock production in Argentina. Climatic Change, 153(3), 439–455.

    Article  Google Scholar 

  • Sabiiti, G., et al. (2018). Adapting agriculture to climate change: Suitability of banana crop production to future climate change over uganda. In J. Nalau (Ed.), Leal Filho, W (pp. 175–190). Springer International Publishing.

    Google Scholar 

  • Santinato, R., & Fernandes, A. (2012). Cultivo do cafeeiro irrigado por gotejamento. Uberaba: Autores.

    Google Scholar 

  • Schauberger, B., et al. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8(1), 13931.

    Article  CAS  Google Scholar 

  • Scott, D., Hall, C. M., & Gössling, S. (2015). A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonization. Journal of Sustainable Tourism, 24(1), 8–30.

    Google Scholar 

  • Sediyama, G. C., et al. (2001). Zoneamento agroclimático do cafeeiro (Coffea arabica L.) para o Estado de Minas Gerais. Revista Brasileira de Agrometeorologia, 9(3), 501–509.

    Google Scholar 

  • Seyboth, K. (2013). Intergovernmental panel on climate change (IPCC). Encyclopedia of energy, natural resource, and environmental economics.

  • Silva, V. A., et al. (2010). Resposta fisiológica de clone de café Conilon sensível à deficiência hídrica enxertado em porta-enxerto tolerante. Pesquisa Agropecuária Brasileira, 45(5), 457–464.

    Article  Google Scholar 

  • Tavares, P. . Da., S., et al. (2018). Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, 18(3), 873–883.

    Article  Google Scholar 

  • Thayer, A. W., et al. (2020). Integrating agriculture and ecosystems to find suitable adaptations to climate change. Climate, 8(1), 10.

    Article  Google Scholar 

  • Thornthwaite, C., & Mather, J. (1955). The water balance publications in climatology. Centerton, NJ: DIT Laboratory of climatology.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Article  Google Scholar 

  • van Vuuren, D. P., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31.

    Article  Google Scholar 

  • Vegro, C. L. R., De Almeida, L. F. (2020). Global coffee market: Socio-economic and cultural dynamics. In Coffee consumption and industry strategies in Brazil. Elsevier, 3–19.

  • White, S., Brooke, J., & Pfister, C. (2018). Climate, weather, agriculture, and food. In S. White, C. Pfister, & F. Mauelshagen (Eds.), The Palgrave handbook of climate history (pp. 331–353). Palgrave Macmillan.

    Chapter  Google Scholar 

  • WTO. (2020). Statistics on merchandise trade. Disponível em: timeseries.wto.org/. Acesso em: 28 maio. 2020.

Download references

Funding

This study was funded by IFMS Campus de Naviraí and IFSULDEMINAS Campus of Muzambinho. We thank the "National Council for Scientific and Technological Development—CNPq" for the productivity grant of the 2nd author. This study was financed in part by the IFMS Campus de Navirai.

Author information

Authors and Affiliations

Authors

Contributions

JAL contributed to Formal analysis, data curation, writing—original draft, writing—review & editing, Visualization; LEDOA contributed to conceptualization, methodology, supervision, project administration; PAL contributed to writing—review & editing; RFDL contributed to writing—review & editing; GBT contributed to writing—review & editing; GDSR contributed to writing—review & editing; JRDSCDM contributed to Writing—Review & Editing.

Corresponding author

Correspondence to Lucas Eduardo de Oliveira Aparecido.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorençone, J.A., de Oliveira Aparecido, L.E., Lorençone, P.A. et al. Agricultural zoning of Coffea arabica in Brazil for current and future climate scenarios: implications for the coffee industry. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04066-3

Keywords

Navigation