Skip to main content

Advertisement

Log in

Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Active layer plays a key role in regulating the dynamics of hydrothermal processes and ecosystems that are sensitive to the changing climate in permafrost regions. However, little is known about the hydrothermal dynamics during freeze-thaw processes in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau (QTP). In the present study, the freezing and thawing processes at four sites (QT01, 03, 04, and 05) with different vegetation types on the QTP was analyzed. The results indicated that the impact on the soil water and heat during the summer thawing process was markedly greater than that during the autumn freezing process. Furthermore, the thermal-orbit regression slopes for all sites exhibited a homologous variation as the depth increased, with the slowest attenuation for the meadow sites (QT01 and QT03) and a slightly faster attenuation for the desert steppe site (QT05). The air and ground surface temperatures were similar in winter, but the ground surface temperature was significantly higher than the air temperature in summer in the radiation-rich environment at all sites on the QTP. The results also indicated that the n-factors were between 0.36 and 0.55 during the thawing season, and the annual mean temperature near the permafrost table was between − 1.26 and − 1.84 °C. In the alpine desert steppe region, the thermal conditions exhibited to show a warming trend, with a current permafrost table temperature of − 0.22 °C. The annual changing amplitude of the ground temperature at the permafrost table was different for different vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bandopadhyay S, Ke J, Nelson MG, Chen G, Izaxon V (1999) Analysis and prediction of water infiltration in underground, frozen placer mines. Mining in the Arctic, 71–78 pp

  • Beltrami H (1996) Active layer distortion of annual air/soil thermal orbits. Permafr Periglac Process 7(2):101–110

    Article  Google Scholar 

  • Bockheim JG, Hall KJ (2002) Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: periglacial and permafrost research in the Southern Hemisphere. S Afr J Sci 98(1 & 2):82–90

    Google Scholar 

  • Burn C, Smith C (1988) Observations of the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada. Arctic: 99–104

  • Cannone N, Evans JCE, Strachan R, Guglielmin M (2006) Interactions between climate, vegetation and the active layer in soils at two Maritime Antarctic sites. Antarct Sci 18(3):323–333

    Article  Google Scholar 

  • Che T, Li X, Jin R, Armstrong R, Zhang T (2008) Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol 49:145–154

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett 31(4). https://doi.org/10.1029/2003GL018680

  • Darmody RG, Thorn CE, Schlyter P, Dixon JC (2004) Relationship of vegetation distribution to soil properties in Kärkevagge, Swedish Lapland. Arct Antarct Alp Res 36(1):21–32

    Article  Google Scholar 

  • Ding Y, Ye B, Liu S, Shen Y, Wang S, Yang M (2000) Monitoring of frozen soil hydrology in macro-scale in the Qinghai-Xizang Plateau. Chin Sci Bull 45(12):1143–1149

    Article  Google Scholar 

  • Field CB, Raupach M (2004) Toward CO2 stabilization: issues, strategies, and consequences. Island Press, Washington, DC

  • Goodrich L (1978) Some results of a numerical study of ground thermal regimes.In Proceedings of the Third International Conference on Permafrost, Ottawa. National Research Council of Canada, vol. 1, pp. 29–34

  • Guglielmin M, Ellis Evans J, Cannone N (2005) Interactions between climate, vegetation and active layer in Maritime and Continental Antarctica for climate change monitoring. Terra Antarctica Report 11:15–27

    Google Scholar 

  • Hao X, Luo S, Che T, Wang J, Li H, Dai L, Huang X, Feng Q (2019) Accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau. International Journal of Digital Earth 12(4):375–393

    Article  Google Scholar 

  • Hinkel KM, Nelson FE, Shur Y, Brown J, Everett KR (1996) Temporal changes in moisture content of the active layer and near-surface permafrost at Barrow, Alaska, USA: 1962-1994. Arct Alp Res 28(3):300–310

    Article  Google Scholar 

  • Hinkel KM, Outcalt SI, Taylor AE (1997) Seasonal patterns of coupled flow in the active layer at three sites in northwest North America. Can J Earth Sci 34(5):667–678

    Article  Google Scholar 

  • Hinzman L, Kane D, Gieck R, Everett K (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19(2):95–110

    Article  Google Scholar 

  • Hu G, Zhao L, Li R, Wu T, Pang Q, Wu X, Qiao Y, Shi J (2014) Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions. Soils 46(2):355–360

    Google Scholar 

  • Hu G, Zhao L, Li R, Wu T, Wu X, Pang Q, Xiao Y, Qiao Y, Shi J (2015a) Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China. Chin Geogr Sci 25(6):713–727

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Pang Q, Xiao Y, Li W, Qiao Y (2015b) Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Sci China Earth Sci 58(12):2309–2326

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Cheng G (2016a) Comparison of different soil temperature algorithms in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China. Cold Reg Sci Technol 130:1–7

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Shi J, Li W, Cheng G (2016b) New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Wu T, Li R, Xie C, Xiao Y, Pang Q, Liu G, Hao J, Shi J, Qiao Y (2017) A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau. Geoderma 306:244–251

    Article  Google Scholar 

  • Hu G-J, Tian L-M, Zhao L, Wu X-D, Li R, Wu T-H, Zhu X-F, Du E-J, Wang Z-W, Hao J-M, Li W-P, Wang S-H (2018) Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 63(11):1733–1744

    Article  Google Scholar 

  • Hu G, Zhao L, Li AR, Wu X, Wu T, Zhu X, Pang Q, Liu GY, Du E, Zou D, Hao J, Li W (2019a) Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models. Atmos Res 220:155–168

    Article  Google Scholar 

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019b) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Su Y, Hao J (2019c) Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau. Theoretical and Applied Climatology: 1–14

  • Kane DL, Hinzman LD, Zarling JP (1991) Thermal response of the active layer to climatic warming in a permafrost environment. Cold Reg Sci Technol 19(2):111–122

    Article  Google Scholar 

  • Karunaratne K, Burn C (2004) Relations between air and surface temperature in discontinuous permafrost terrain near Mayo, Yukon Territory. Can J Earth Sci 41(12):1437–1451

    Article  Google Scholar 

  • Lachenbruch AH (1994) Permafrost, the active layer, and changing climate. 2331-1258, US Geological Survey

  • Li R, Ji G, Li S, Yang W, Zhao J, Zhou X, Lü L (2005) Soil heat condition discussion of Wudaoliang Region. Acta Energiae Solaris Sinica 26(3):299–303

  • Li R, Zhao L, Wu T, Ding Y, Xiao Y, Jiao Y, Sun L, Shi J (2013) Soil thermal regime of active layer in Wudaoliang region of the Yangzi Rive source. Arid Land Geography 36(2):277–284

    Google Scholar 

  • Li R, Zhao L, Wu T, Ding Y, Xiao Y, Jiao Y, Qin Y, Xin Y, Du E, Liu G (2014) Investigating soil thermodynamic parameters of the active layer on the northern Qinghai-Tibetan Plateau. Environ Earth Sci 71(2):709–722

    Article  Google Scholar 

  • Lin Z, Burn CR, Niu F, Luo J, Liu M, Yin G (2015) The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafr Periglac Process 26(2):142–159

    Article  Google Scholar 

  • Liu G, Wang G, Hu H, Li T, Wang J, Ren D, Huang Y (2009) Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau. J Glaciol Geocryol 31(1):89–95

    Google Scholar 

  • Lu Z, Wu Q, Sheng Y, Zhang L (2006) Heat and water difference of active layers beneath different surface conditions near Beiluhe in Qinghai-Xizang Plateau. J Glaciol Geocryol 28(5):642–647

    Google Scholar 

  • Muller SW (1947) Permafrost or permanently frozen ground and related engineering problems. J.W. Edwards, Ann Arbor, pp 231

  • Romanovsky V, Osterkamp T (1995) Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafr Periglac Process 6(4):313–335

    Article  Google Scholar 

  • Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. Journal of Geophysical Research-Biogeosciences, 115

  • Smith M, Riseborough D (1983) Permafrost sensitivity to climatic change, Permafrost, proceedings of the fourth international conference, pp 1178–1183

  • Smith M, Riseborough D (1996) Permafrost monitoring and detection of climate change. Permafr Periglac Process 7(4):301–309

    Article  Google Scholar 

  • Thorn CE, Darmody RG, Allen CE, Dixon JC (2002) Near–surface ground temperature regime variability in selected microenvironments, Kärkevagge, Swedish Lapland. Geografiska Annaler: Series A, Physical Geography 84(3-4):289–300

    Article  Google Scholar 

  • Wang S, Zhao X (1997) Environmental change in patchy permafrost zone in the south section of the Qinghai -Tibet Highway. J Glaciol Geocryol 19(3):231–231

    Google Scholar 

  • Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China Ser D Earth Sci 49(11):1156–1169

    Article  Google Scholar 

  • Wang Z, Nan Z, Zhao L (2011) The applicability of MODIS land surface temperature products to simulating the permafrost distribution over the Tibetan Plateau. J Glaciol Geocryol 33(1):132–143

    Google Scholar 

  • Wang G, Mao T, Chang J, Du J (2014) Impacts of surface soil organic content on the soil thermal dynamics of alpine meadows in permafrost regions: data from field observations. Geoderma 232:414–425

    Article  Google Scholar 

  • Wu Q, Shen Y, Shi B (2003) Relationship between frozen soil tegether with its water-heat process and ecological environment in the tibetan plateau. J Glaciol Geocryol 25(3):250–255

    Google Scholar 

  • Yuan J, Yan S, Zhao X, Wang S (1997) The relation between permafrost degradation and Kobresia Meadow Change on the Southern Piedmont of the Tangula Range. J Glaciol Geocryol 19(1):47–47

    Google Scholar 

  • Zhang T, Osterkamp T, Stamnes K (1997) Effects of climate on the active layer and permafrost on the North Slope of Alaska, USA. Permafr Periglac Process 8(1):45–67

    Article  Google Scholar 

  • Zhang Y, Chen W, Cihlar J (2003) A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J Geophys Res-Atmos 108(D22)

  • Zhang Z, Wu Q, Gao S, Hou Y (2017) Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region. Environ Earth Sci 76(5):1–13

  • Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob Planet Chang 43(1):19–31

    Article  Google Scholar 

  • Zhao L, Li R, Ding Y, Xiao Y, Sun L, Liu Y (2011) Soil thermal regime in Qinghai-Tibet Plateau and its adjacent regions during 1977- 2006. Adv Clim Chang Res, 7(5):307–316

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Erji Du, Guangyue Liu, Jimin Yao, and Wangping Li whose comments were useful in revising the paper.

Funding

This work was financially supported by the National Natural Science Foundation of China (41601078), the National Natural Science Foundation of China (41690142, 41771076, 41871060, 41671070, 41671068), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020102 and XDA23060703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojie Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Zhao, L., Li, R. et al. Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theor Appl Climatol 139, 983–993 (2020). https://doi.org/10.1007/s00704-019-03008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-03008-2

Navigation