Skip to main content
Log in

Investigating soil thermodynamic parameters of the active layer on the northern Qinghai-Tibetan Plateau

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The soil thermodynamic parameters, including thermal conductivity, diffusivity and volumetric capacity within the active layer on the northern Tibetan Plateau, were calculated using the measured data of soil temperature gradient, heat flux, and moisture at four stations from October 2003 to September 2004. The results showed that the soil thermodynamic parameters exhibited clear seasonal fluctuation. The thermal conductivity and diffusivity in summer and autumn at Beiluhe, Kexinling, and Tongtianhe were larger than those in winter. The volumetric thermal capacity causes an opposite change; it was larger in autumn and winter than in summer. In spring, the soil thermal conductivity at the Kekexili station was larger than that in summer. Generally, fine-grained soils and lower saturation degrees in the topsoil might be a reason for the lower soil thermal conductivity in winter. For a given soil, soil moisture was the main factor influencing the thermodynamic parameters. The unfrozen water content that existed in frozen soils greatly affected the soil thermal conductivity, whose contribution rate was estimated to be 55 %. The thermodynamic parameters of frozen soils could be expressed as a function of soil temperature, volumetric ice content and soil salinity, while for the unfrozen ground the soil moisture content is the dominant factor for those thermal parameters. As for the soil thermal diffusivity, there exists a critical value of soil moisture content. When the soil moisture content becomes less than a critical value, the soil thermal diffusivity increases as the soil moisture content rises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Hamdeth NH, Khdair AI, Reede RC (2001) A comparison of two methods used to evaluate thermal conductivity for some soils. Int J Heat Mass Transf 44:1073–1078

    Article  Google Scholar 

  • Anderson DM, Tice AR (1972) Predicting unfrozen water content in frozen soil from surface area measurements. Highw Res Rec 373:12–18

    Google Scholar 

  • Bachmann JR, Horton R, Ren TS, van der Ploeg RR (2001) Comparison of the thermal properties of four wettable and four water-repellent soils. Soil Sci Soc Am J 65:1675–1679

    Article  Google Scholar 

  • Campbell GS, Ungbauer JDJR, Bidlake WR, Hungerford RD (1994) Predicting the effect of temperature on soil thermal conductivity. Soil Sci 158:307–313

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112:F02S03. doi:10.1029/2006JF000631

    Article  Google Scholar 

  • Côté J, Konrad JM (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(3):443–458

    Article  Google Scholar 

  • De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of Plant Environment. North Holland Publishing, Co., Amsterdam, p 594

    Google Scholar 

  • Farouki OT (1981) The thermal properties of soil in cold regions. Cold Reg Sci Technol 5:67–75

    Article  Google Scholar 

  • Farouki OT (1986) Thermal properties of soil. Series on Rock and soil Mechanics. Trans Tech 11:136

    Google Scholar 

  • Gao ZQ, Bian LG, Zhang YB, Wang JX, Jiang DM (2002) Study on analytical resolution to soil thermal conductive equation and soil thermal diffusivity over Nagqu area. Acta Meteorol Sinica 60(3):352–360

    Google Scholar 

  • Garrat JR (1992) The atmospheric boundary layer. Cambridge university press, Cambridge, p 316

    Google Scholar 

  • Ghauman BS, Lal R (1985) Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Sci 139:74–80

    Article  Google Scholar 

  • Haynes D, Carbee D, and Vanpelt D (1980) Thermal diffusivity of frozen soil, Usacrrel Special Report, p 167

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in Alaska Arctic. Cold Reg Sci Technol 19(2):95–110

    Article  Google Scholar 

  • Horton R, Wierenga PJ (1984) The effect of column wetting on soil thermal conductivity. Soil Sci 138:102–108

    Article  Google Scholar 

  • Hu YQ, Qi YJ, Yang XL (1990) Preliminary Analysis about characteristics of microclimate and heat budget in Hexi Gobi (Huayin). Plateau Meteorol 9(2):113–119 (in Chinese with English abstract)

    Google Scholar 

  • Inaba H (1983) Experimental study on the thermal properties of frozen soils. Cold Reg Sci Technol 8:181–187

    Article  Google Scholar 

  • Johansen O (1975) Thermal conductivity of soils. Ph.D. thesis, University of Trondheim, p 236

  • Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils. ACFEL Technical report 23. University of Minnesota, Minneapolis

  • Lachenbruch AH (1994) Permafrost, the active layer and changing climate: USGS Open-File Report. United States Geological Survey, Washington DC

    Google Scholar 

  • Lange GR, McKim HL (1963) Saturation, phase composision and freezing-point depression in a rigid soil model. In: Proceedings of the First International Permafrost Conference, Purdue, pp 187–191

  • Li SX, Cheng GD, Guo D (1996) The Numerical simulation on the permafrost variation of Tibetan Plateau under the condition of warming climate. Sci in China (series D) 26(4):342–347 (in Chinese with English abstract)

    Google Scholar 

  • Li R, Ji GL, Li SX, Yang W, Zhao JQ, Zhou XP, Lv LZ (2005) Soil heat discussion of Wudaoliang region. Acta Energiasinica 26(3):299–303 (in Chinese)

    Google Scholar 

  • Li R, Zhao L, Ding YJ, Wu TH, Xi Y, Du EJ, Liu GY, Qiao YP (2012) Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin Sci Bull 57:4609–4616. doi:10.1007/s11434-012-5323-8

    Article  Google Scholar 

  • Lin Z, Wu X (1981) Climatic regionalization of the Qinghai-Xizang Plateau. Acta Geographic Sinica 36(1):22–32 (in Chinese)

    Google Scholar 

  • Ling F, Zhang T (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg Sci Technol 38:1–15

    Article  Google Scholar 

  • Lu S, Ren TS, Gong YS, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14

    Article  Google Scholar 

  • Ochsner TE, Horton R, Ren T (2001) A new perspective on soil thermal properties. Soil Sci Soc Am J 65:1641–1647

    Article  Google Scholar 

  • Overduin PP, Kane DL, van Loon WKP (2006) Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Reg Sci Technol 45(1):8–22

    Article  Google Scholar 

  • Putkonen J (1998) Soil thermal properties and heat transfer processes near Ny Alesund northwestern Spitsbergen Svalbard. Polar Res 17(2):165–179

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, The Netherland, p 720

    Book  Google Scholar 

  • Tarnawski VR, Wagner B (1993) Modeling the thermal conductivity of frozen soil. Cold Reg Sci Technol 22(1):19–31

    Article  Google Scholar 

  • Vermette S, Christopher S (2008) Using the rate of accumulated freezing and thawing degree days as a surrogate for determining freezing depth in a temperate forest soil. Middle Sates Geogr 41:68–73

    Google Scholar 

  • Wang JC, Wang SL, Qiu GQ (1979) Permafrost along the Qinghai-Xizang highway. Acta Geographica Sinica 34(1):18–34 (in Chinese)

    Google Scholar 

  • Wang CH, Dong WJ, Wei ZG (2003) Study on relationship between frozen –thaw processes in Qinghai-Xizang Plateau and circulation in East Asia. Chinese J Geophys 46(3):309–316 (in Chinese)

    Google Scholar 

  • Wang KC, Wang PC, Liu JM, Sparrow M, Haginoya S, Zhou XJ (2005) Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Bound-Layer Meteorol 116:117–129

    Article  Google Scholar 

  • Wang S, Wang QJ, Fan J, Wang WH (2012) Soil thermal properties determination and prediction model comparison. Trans Chin Soc Agric Eng 28(5):78–84 (in Chinese with English abstract)

    Google Scholar 

  • Weng DM, Chen WL, Shen JC (1981) Microclimate and cropland microclimate. Agricultural press, Beijing, p 30

    Google Scholar 

  • Wolfe LM, Thieme JQ, Petroleum Engrs (1964) Physical and thermal properties of frozen soil and ice. J Soc Pet Eng 4(1):67–72

    Google Scholar 

  • Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res 113:D13108. doi:10.1029/2007JD009539

    Article  Google Scholar 

  • Xin YF, Wu BY, Bin LG, Liu G, Zhang L, Li R (2012) Response of the East Asia climate system to water and heat change of global frozen soil using NCAR CAM model. Chin Sci Bull 57(34):4462–4471

    Article  Google Scholar 

  • Xu XZ, Oliphant JL, Tice AR (1985) Soil-water potential and unfrozen water content and temperature. J Glaciol Geocryol 7(1):1–14 (in Chinese)

    Google Scholar 

  • Xu XZ, Wang JC, Zhang LX (2001) Physics on frozen earth. Chinese Science Press, Beijing, pp 75–91

    Google Scholar 

  • Yang K, Koike T, Ye BS, Bastidas L (2005) Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J Geophys Res 110:D08101. doi:10.1029/2004JD005500

    Google Scholar 

  • Yang K, Watanabe T, Koike T, Li X, Fujii H, Tamagawa K, Ma YM, Ishikawa H (2007) Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J Meteorol Soc Japan 85A:229–242

    Article  Google Scholar 

  • Zhang Q, Wang S, Wei GA (2003) A study on parameterization of local land-surface physical processes on the Gobi of northern east China. Chin J Geophys 46(5):616–623 (in Chinese)

    Article  Google Scholar 

  • Zhao L (2004) The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibetan Plateau. Dissertation, of the degree for the Doctor of Philosophy, CAS

  • Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Status of permafrost and active layer in Central Asia during the International Polar Year. Permafr Periglac Process 21:198–207

    Article  Google Scholar 

  • Zheng D, Zhang RZ, Yang QY (1979) On the natural zonation in the Qingai-Xizang Plateau. Acta Geographica Sinica 34(1):1–11 (in Chinese)

    Google Scholar 

  • Zhou Y, Shuai SZ (1998) A study on heat exchange in winter wheat field. Meteorology 24(3):54–57 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors thank Miss Lynn Everett for her help to improve the language. This study was funded by the National Major Scientific Project of China (2013CBA01803), the National Natural Science Foundation of China (41271081, 41271086, 40871037, and 40901042), the fund of the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2010-03), the Hundred Talents Program of the Chinese Academy of Sciences (51Y251571). The authors also appreciate the constructive comments and suggestions from the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Zhao, L., Wu, T. et al. Investigating soil thermodynamic parameters of the active layer on the northern Qinghai-Tibetan Plateau. Environ Earth Sci 71, 709–722 (2014). https://doi.org/10.1007/s12665-013-2473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2473-1

Keywords

Navigation